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ABSTRACT: Advanced potential energy surfaces are defined as
theoretical models that explicitly include many-body effects that
transcend the standard fixed-charge, pairwise-additive paradigm
typically used in molecular simulation. However, several factors
relating to their software implementation have precluded their
widespread use in condensed-phase simulations: the computa-
tional cost of the theoretical models, a paucity of approximate
models and algorithmic improvements that can ameliorate their
cost, underdeveloped interfaces and limited dissemination in com-
putational code bases that are widely used in the computational
chemistry community, and software implementations that have
not kept pace with modern high-performance computing (HPC)
architectures, such as multicore CPUs and modern graphics
processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization
approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and
increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account
for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods
onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can
be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching
sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.

1. INTRODUCTION

Over the last 50 years computational chemistry has advanced to
be an equal partner with experiment in research areas ranging
from lead optimization in drug discovery through to mech-
anistic insight into catalysts such as zeolites and enzymes. His-
torically, these successes have relied on the most tractable classical

models for condensed-phase simulation: the assumption of a
pairwise-additive fixed-charge force field, whose functional form
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is nearly identical to that laid out by Lifson and Warshel in the
late 1960s.1
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Pairwise-additive molecular models are widely available in a
range of community codes such as Amber,2 Charmm,3 NAMD,4

and OpenMM,5 and their success is due to the continued
improvements in optimization of their parameters through a
pragmatic approach of comparison to quantum chemical calcu-
lations and empirical fitting to condensed-phase properties.
Although pairwise-additive models may be an inadequate
representation of the true many-body physics of the quantum
mechanical energy surface, their popularity also stems from
the fact that they better permit the high-dimensional spatial or
temporal averaging that is dictated by the laws of statistical
mechanics, especially since the software that implements them is
also well-optimized on modern day computer architectures.
Before addressing the inadequacy of pairwise additivity, the

molecular simulation field required a refractory period to sort out
other important aspects of the molecular simulation protocol to
generate meaningful results and analysis. This included over-
coming finite size system effects, the use of Ewald summation for
long-ranged electrostatics,6,7 integrators for the equations of
motion that are symplectic,8 and extended system methods that
formally reach the correct limiting thermodynamic ensemble.9,10

With the advent of greater computing power combined with
these improved simulation protocols, it then became possible to
diagnose when the pairwise-additive potential energy and forces
were breaking down. The failures of pairwise additivity are
unambiguous when one considers the “asymmetric environ-
ment”11 such as the heterogeneity at interfaces,12,13 calculation of
electric fields in complex protein environments,14,15 hydration
free energies of a large range of small molecules,16,17 or
aggregation propensities of hydrophobic peptides.18−20 From
this accumulating experience it is becoming apparent that we are
reaching a generational transition in how to model the under-
lying potential energy surface. Almost all of the leading force field
development teams are devising transferable many-body force
fields,20−50 and advances are being made to include more intricate
molecular interactions that account for charge penetration38,51−53

and charge transfer.54−59 In order to gain the full advantage of
these advanced classical potential energy surfaces, they should
also be properly combined with explicit quantum mechanical
treatments, to yield better predictions when bond making and
bond breaking are important in the condensed phase.
However, the extension to better physics comes at a cost. First,

advanced potential energy surfaces carry a larger computational
overhead such that it becomes more difficult to realize statistical
convergence of condensed-phase properties. Second, the more
complicated functional forms are harder to parametrize and
hence are more brittle in their application, and new advances are
needed to overcome the current limitations of hand-tuning
parameters. Third, advanced treatments of electron−electron
interactions using QM/MM methods further increase computa-
tional expense and thus limit necessary sampling. Finally, the
software implementation of advanced potential energy surfaces

on current or emergent hardware platforms has posed several
challenges that preclude their widespread adoption in the
computational chemistry community.
These concurrent issues can be illustrated using the status of

the classical polarization force field AMOEBA (atomic multipole
optimized energetics for biomolecular applications)27,60,61 and
its implementation in the TINKER package that we reviewed
previously in 2010.62 AMOEBA has the following functional
form for the interactions among atoms
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where the first six terms describe the short-range valence
interactions such as bond and angle deformations, bond-angle
cross terms, a formal Wilson−Decius−Cross decomposition of
angle bending into in-plane and out-of-plane components, and a
“softer” buffered 14-7 van der Waals form. In order to provide a
better description of short-ranged anisotropic interactions,
atomic multipoles and polarizable dipoles replace the standard
fixed partial charges in the last two terms in eq 2. The essence of
the AMOEBA model can be effectively captured in the polari-
zation equation for the induced dipole vector on polarizable site i
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where μ⇀i is the inducible dipole at atom site i, αi is the isotropic
polarizability of atom i, Tij is the rank-two interaction tensor
between atoms i and j containing derivatives of 1/rij prescribed by
the permanent multipole expansion, Tik′ is the corresponding
interaction tensor just for inducible dipole−dipole interactions,
and Mj

(d) are the permanent multipole moments. The rank-two
tensor T prescribes the interaction among the permanent
multipole sites through quadrupole given in the rank-one tensor
M (q, μx, μy, μz, Qxx, Qxy, Qxz, Qyx, Qyy, Qyz, Qzx, Qzy, Qzz); the
d superscript refers to scaling factors in the AMOEBA potential
that prescribe which permanent multipole sites may give rise to
polarization in another site. The fixed multipoles introduce
significant computational overhead with respect to standard
fixed-charge models, and historically the additional cost of
solving the linear set of polarization equations using a self-
consistent field approach based on the conservative successive
overrelaxation method63 has contributed to slow adoption of
AMOEBA by the molecular simulation community.
TheTINKERcodes from thePonder group,64 thepmemd.amoeba

code in Amber (primarily written by Bob Duke),2 and ffx65

have been the main community codes supporting the AMOEBA
force field for the last two decades. On a single thread, such codes
yield roughly 0.04 ns/day for the 161 amino acid cyclophilin A
protein embedded in 6149 water molecules (this particular
timing is for pmemd.amoeba on an Intel Xeon E5-2650 at
2.3 GHz, using a 1 fs time step). The OpenMM implementation
of AMOEBA provides significant speed improvements, running
this example at 1.7 ns/day on an NVIDIA GTX980 GPU (using
mixed precision and again assuming a 1 fs time step). Leveraging
a standard RESPA66 multiple time step method can increase the
time step to 2 fs, and parallelization strategies via OpenMP or
MPI calls speed up this calculation by at most a factor of ∼10, so
that tens to hundreds of nanosecond simulations would require
months of time even on high-end compute clusters. Still, rela-
tively few studies using AMOEBA have been carried out on
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simulation time scales that are now considered routine for
simpler, fixed-charge force fields. As an example of relative speed
performance, the fixed-charge Amber MD simulations for
cyclophilin A runs at 486 ns/day on an NVIDIA GTX980
GPU, using hydrogen mass repartitioning,67 and SHAKE and
SETTLE for constraining bonds to hydrogens, thereby
permitting a 4 fs time step. Although this comparison combines
differences in computational complexity with differences in
hardware capability, it represents in a general way the practical
speed trade-offs facing users of these codes in early 2016.
It also illustrates an important and, hopefully as we show here,

transient observation: although the performance penalty for
going from a simple fixed-charge force field to a more complex,
polarizable potential like AMOEBA should in theory be 1 order
of magnitude or less, these implementations yield performance
ratios closer to ∼140 (486/3.4) on GPUs and up to ∼600
(486/0.8) on CPUs with MPI, and assuming a 2 fs time step as
illustrated here for the cyclophilin A protein. The effective ratio
between AMOEBA and a fixed-charge force field can be even
larger if one takes into account the use of rigid water models,
which is very common with simpler force fields, and which
permits even longer time steps. However, fixed geometry models
are not philosophically in line with advanced force fields such as
AMOEBA. Therefore, it is clear that further model innovation,
new method development, and greatly improved software imple-
mentations are needed if more routine adoption of multipole-
based polarizable force fields is to become a reality.
This Feature Article presents a summary of recent results by

a large consortium of researchers, which indicate that the state-
of-the-art is changing rapidly, thus lowering the barrier to the
more standard use of advanced force fields for large systems on
long time scales. In section 2 we introduce the range of new
models and model physics centered around the AMOEBA force
field. In section 2.1 we lay out a many-body expansion (MBE)
formalism that provides well-defined approximations to
complete mutual polarization, including the direct polarization
model iAMOEBA68 and the approximate mutual polarization
model 3-AMOEBA,69 both of which yield acceptable accuracy
and significant computational speedups over the parent
AMOEBA potential. In sections 2.2 and 2.3, we describe two
new QM/AMOEBA models that account for true mutual
polarization across the QM/MM boundary as implemented in
ONETEP70 and Q-Chem.71 In section 3 we summarize new
methodological advances that tackle important algorithmic
bottlenecks for simulating advanced potential energy surfaces.
In section 3.1 we first consider the problem of more efficient
sampling of AMOEBA through the formulation of a combined
extended Lagrangian and self-consistent field solver for mutual
polarization,72 and in section 3.2 we describe a multiple time step
(MTS) integration algorithm that allows time steps of∼100 fs to
be employed in molecular dynamics simulations of AMOEBA.73

In section 3.3 we describe improvements in particle-mesh Ewald
(PME) multipole electrostatics as implemented in DL_POLY,74

and in section 3.4 we describe the progress made in more
tractable linear-scaling of density functional theory75 that can be
usefully combined with the QM/AMOEBA model described in
sections 2.2 and 2.3. In section 4 we describe multiple new GPU
and CPU implementations of AMOEBA and other approximate
AMOEBA models and demonstrate their use in a range of appli-
cation areas. Section 4.1 presents modest improvements in
the OpenMP version of AMOEBA in TINKER, and section 4.2
describes a hybrid OpenMP/MPI implementation of the
iAMOEBA, 3-AMOEBA, and AMOEBA models implemented

in TINKER7 and TINKER-HP. In section 4.3 we highlight the
recent advances of fast GPU formulations of AMOEBA in
OpenMM.5 In section 5 we present validation and some large
molecular simulation results using AMOEBA and the improved
code bases. Section 5.1 presents important validation studies of
the AMOEBA potential including energy decomposition analysis
of simple ion−water interactions compared against high-quality
density functional theory,76 and showing that simulated proteins
using the AMOEBA force field are structurally stable on long
time scales of 100−500 ns. Given these validations, section 5.2
describes the recent success of AMOEBA in SAMPL compe-
titions for host−guest ligand predictions, and the ability to
reproduce active site electrostatics previously quantified by much
more expensive ab initio calculations on structures extracted from
molecular dynamics simulations. We close in section 6 with a
final summary and conclusions.

2. NEW MODELS OF ADVANCED POTENTIAL ENERGY
SURFACES
2.1. Hierarchy of Models Based on the AMOEBA Force

Field. The many-body expansion (MBE) to the total potential
energy of an N-body potential77−82

= + + +U U U U ...1 2 3 (4a)
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provides a useful organizing principle for AMOEBA-based
models and algorithms that alter the trade-off between accuracy
and computational speed, thereby allowing users to define
a “sweet spot” for a given scientific application. The N-body
AMOEBA polarizable force field can be evaluated as the set of
atomic or molecular interactions in increasingly larger clusters
starting from monomers, progressing to dimers, trimers, etc.
When eq 4 is truncated at the level of trimers, it defines direct
polarization exactly (iAMOEBA) and mutual polarization
approximately (3-AMOEBA), and in the limit of large N reduces
to the complete AMOEBA polarization model. For the sake of
clarification, a monomer may represent a small molecule such as
an ion, a large water cluster, or a multiatom fragment within a
larger covalently bound structure like a biopolymer.
One of our primary goals in the development of iAMOEBA is

to retain as much of the excellent AMOEBA model performance
as possible, while reducing its computational cost for conditions
where the number of degrees of freedom is large and when
extensive statistical sampling is necessary. The iAMOEBAmodel
is defined by a simple one step polarization scheme where
the inducible dipoles respond only to the local field due to
permanent atomic multipoles, i.e.
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The question we addressed in previous work is whether the
more limited direct polarization functional form in eq 5 can be
reparameterized to recapture the missing mutual polarization.
Using the automated parametrization tool ForceBalance,45,83,84

we optimized the parameters of the iAMOEBA water model to
recover the temperature dependence of the density and heat of
vaporization, vibrational frequencies, and other properties of gas-
phase water clusters.68 Encouragingly, in studies of properties for
which it was not explicitly parametrized such as the temperature
dependence of the dielectric constant and the ordering of the ice
phases,85 the iAMOEBAmodel proved to be a high-quality water
model, although it will require the wholesale reparameterization
of other systems, including proteins, ions, and nucleic acids in
order to broaden its applicability.
Nonetheless, there are good reasons to undertake the

extensive parametrization work needed to extend iAMOEBA
because the direct polarization form offers some signifi-
cant advantages over full mutual polarization: (1) the iAMOEBA
polarizable model is still responsive to the molecular environ-
ment at the direct polarization level, (2) iAMOEBA eliminates
the expense of a tight SCF convergence for the induced dipoles
or the poor accuracy associated with loose convergence of the
dipoles (∼10−2 D as was a typical convergence criterion in early
simulations with the AMOEBAmodel), (3) iAMOEBA eliminates
polarization catastrophes, for which full mutual polarization
schemes require a damping function, and (4) there are no
stability or accuracy issues in solving mutual polarization through
an extended Langrangian formulation as used with many point-
dipole or Drude polarization models.
At the same time there is evidence that there are limitations to

what can be captured by the direct polarization response.
In particular, the following limitations apply: iAMOEBA energies
and forces for gas-phase water cluster are not as accurate
compared to the full AMOEBA03 water model, the ratio of the
dielectric constant of the liquid compared to that of ice is smaller
than seen experimentally, and the second virial coefficients are
too negative. What this suggests is that objective parametrization
schemes like ForceBalance83,84 have exhausted what is possible
under the limited directed polarization functional form, and that
mutual polarization is required to describe the wide range of
electric fields that differ substantially in the gas, liquid, and solid
phases, and presumably are harbingers of problems at molecular
interfaces between protein and water or at asymmetric environ-
ments such as the air−liquid surface. To that end, we have
extended the ForceBalance approach to full mutual polarization,
yielding the AMOEBA14 water model.86 Overall, properties
either remained as accurate as iAMOEBA, or they were signifi-
cantly better. Examples of the latter are the interaction energy of
gas-phase clusters ranging from dimers to 20-mers, the size-
corrected diffusion constant, and the second virial coefficients, all
of which are in better agreement with experiment.86

Although the demonstrably improved physics of a polarizable
force field such as AMOEBA is a necessary prerequisite for
moving beyond the pairwise-additive approximation, it is not
sufficient if the computational expense of an energy and force
calculation remains a huge bottleneck for AMOEBA. Therefore,
it is prudent to approximate mutual polarization by means of a
truncation of eq 4 at the level of the 3-body term; this defines the
3-AMOEBAmodel. The 3-AMOEBA approximation rests on the
reduced computational cost of polarization for the individual
fragments, as well as the fact that these individual subsystems may
be calculated independently, allowing for trivial parallelization
with little communication overhead. The fact that 2- and 3-body

polarization energies decay rapidly with distance permits the use
of interfragment distance cutoffs, reducing a potentially O(N3)
computation to one that scales tractably as O(N).
The implementation of 3-AMOEBA was tested for its ability

to reproduce accurate condensed-phase energies as well as
structural properties of water in the NVT andNPT ensembles, in
which a single water molecule defines a body. We found that
3-AMOEBA yielded small errors of 0.5−2.0% with regard to
the total polarization energy, ostensibly indicating acceptable
convergence of the MBE. However, convergence of the MBE
with regard to energies does not correspond to convergence with
respect to forces nor the internal virial.69 Further investigation
revealed that the accuracy of forces and virial contributions
dramatically improved when the induced dipoles are “embed-
ded” such that the induced dipole sites of the subsystem respond
within a much larger permanent electrostatic environment.69

The electrostatic embedding framework inspired a tractable
method of ameliorating the slow convergence of the force due to
polarization under the MBE, namely, by defining the “body” in
theMBE as a cluster of water molecules rather than a single water
molecule and, in turn, greatly reducing the error in the forces
when truncating the MBE at the 3-body level.69 Given the prom-
ise of the iAMOEBA and 3-AMOEBA models, in section 4.2
we show that an order of magnitude improvement in compu-
tational speed over the current OpenMP implementation in
TINKER can be gained by going to a hybrid OpenMP/MPI
parallel strategy.

2.2. QM/MM with Polarizable MM Using ONETEP and
TINKER. Polarizable force fields such as AMOEBA are expected
to improve the description of chemically diverse environments
compared to traditional fixed point-charge models. Nevertheless,
studies on the use of AMOEBA as the embedding for QM
fragments in QM/MM calculations are still very limited due to
the complexity of handling the mutual polarization between the
two regions. We set out to develop a consistent model for the
coupling of DFT and the AMOEBA polarizable force field using
the ONETEP linear-scaling DFT formulation70 and the
TINKER implementation64 of AMOEBA. Electronic degrees
of freedom in ONETEP are described using strictly localized,
nonorthogonal generalized Wannier functions, expanded in
an underlying p-sinc basis.87 The MM subsystem employs
unmodified AMOEBA electrostatics, i.e., atom-centered, perma-
nent, point multipoles up to quadrupoles and atom-centered,
induced point dipoles, with suitably damped and scaled Coulombic
interactions.60,88 Here, damping refers to a distance-based
smoothing of interaction potentials involving induced dipoles,
while scaling serves to eliminate or attenuate electrostatic inter-
actions between sites interacting through bonded (valence)
terms. The usual mutual polarization scheme is used, with
induced dipoles determined self-consistently through an iterative
procedure.
In the proposed QM/MMmodel the polarization between the

QM and MM subsystems is fully mutual.89 This is accomplished
by allowing the electrostatic potential of the MM environment
(permanent multipoles and induced dipoles) to polarize the
electronic charge density through its inclusion in the QMHamil-
tonian and in gradients of the total energy with respect to the
density matrix. The MM subsystem is in turn polarized in
response to an auxiliary representation of the QM charge density
(electronic and ionic) in terms of atom-centered, point multi-
poles up to a quadrupole. This auxiliary representation, hereafter
termed QM*, is obtained via an extension to the Gaussian distri-
buted multipole analysis (GDMA)90 approach to nonorthogonal
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localized orbitals. The extension that we have developed is a
density-fitting scheme91 that uses truncated spherical waves as an
auxiliary basis.
Polarization of the MM subsystem is assumed to occur

instantaneously in response to the permanent multipoles that
comprise QM*. That is, at every iteration of the total energy
minimization, the induced dipoles in the MM subsystem are
determined self-consistently by minimizing a separate classical
Hamiltonian wherein the QM* multipoles are clamped.
The induced MM dipoles are obtained within TINKER, with
the QM* multipoles serving as an inactive embedding region.
The converged MM induced dipoles, along with permanent MM
multipoles, are then included in the QMHamiltonian in order to
recover the polarization response of the QM subsystem, which
takes place within ONETEP. The fulfillment of the SCF condi-
tion for the induced MM dipoles removes the need for dipole
response terms in the derivatives of the QM/MM polarization
energy with respect to the density matrix.
In point-dipole polarizability models, a suitable damping of

interactions involving induced dipoles is crucial for avoiding the
so-called polarization catastrophe. A successful QM/polarizable-
MM schememust also carefully address damping to avoid similar
artifacts, e.g., the ill-conditioned interaction of an MM point
multipole with a surrounding QM charge density represented on
a Cartesian grid with necessarily finite resolution. In our model
the interaction between QM and induced MM dipoles leverages
the QM* representation; i.e., it is described as a Thole-like
damped interaction of point multipoles, which is fully consistent
with the AMOEBA model. The QM* contributions obtained
from DMA are atom-partitioned, allowing the use of classical
polarizabilities for the QM subsystem in the Thole damping
expressions. Gradients of this interaction energy with respect to
the density matrix elements have been derived and implemented.
Although the QM* representation is found to be an excellent
approximation of the original QM charge density, its accuracy is
nevertheless finite, requiring that the presence of the inter-
mediate step QM → QM* needs to be accounted for in all
gradient expressions.
The interaction betweenQM and permanentMMmultipoles is

not damped, analogous to the AMOEBA model, which does
not damp permanent electrostatics. In the absence of damping
it is advantageous to forego the QM* representation, instead
obtaining the corresponding energy by integrating the potential
of MM multipoles with the full QM density, and thus avoiding
charge penetration errors that afflict the point multipole model.
Singularities are eliminated by using extremely short-range
Thole-like smearing of the multipole potential for grid points in
the immediate vicinity (∼1a0) of point multipoles. Validation
tests have been undertaken to ensure that the resultant energies
are practically insensitive to the details of this smearing.
All strictly-MM energy terms are calculated within TINKER

(bonded interactions, MM/MM van der Waals interactions,
MM/MMpermanent and induced electrostatics), and all strictly-
QM energy terms are calculated within ONETEP (DFT energy,
empirical dispersion correction).89 We find the inclusion of
cross-system (QM/MM) van der Waals terms is necessary to
obtain a physically sound description of QM/MM interactions,
with the repulsive term that implicitly accounts for exchange
repulsion serving a crucial function of balancing strong electro-
static attraction between molecules close to the QM/MM
boundary. In the current model QM/MM van der Waals inter-
actions are modeled in TINKER, in the same manner as their
MM counterparts, except for a suitable adjustment of the slope of

the repulsive wall, but with no change to the position of the
minimum or its depth.
Our findings indicate that the proposed approach is able to

model accurately the embedding of a DFT subsystem within a
classical, polarizable environment.89 This is of practical
significance, because it allows chemical accuracy to be obtained
with QM regions smaller than those used in fixed point-charge
electrostatic embedding schemes, and is vastly superior to
neglecting embedding entirely (i.e., performing DFT on a
truncated system), with the latter suffering from additional issues
beyond its high computational cost.92 To illustrate this point,
Figure 1 presents a test case of a single diphenylhydramine solute

in 330 water molecules for which we calculate a reference DFT
benchmark of the interaction energy between the solute and all
330 solvent molecules. We then test whether the benchmark
interaction energy can be reproduced with a smaller QM region
under the following embedding schemes: all QM with no
embedding (truncation), QM with fixed partial charge electro-
static embedding, QM with GAFF embedding (TIP3P fixed
partial charges and Lennard-Jones QM/MM interactions), and
QM with mutually polarizable AMOEBA embedding. In all
three embedding schemes we keep the total number of water
molecules constant at 330. Additionally, we show fully classical
results obtained with GAFF and AMOEBA, where we progres-
sively add water molecules around the solute.
With no embedding as many as 310 QM waters around the

solute are needed to converge the energy to within 1 kcal/mol of
the benchmark. Using nonpolarizable embedding the accuracy is
achieved by retaining 140 water molecules described at the DFT
level, improving to 35 once GAFF QM/MM van der Waals
interactions are included; with mutual polarization embedding,
the number of DFT water molecules is further reduced to
25 DFT water molecules. The fully classical AMOEBA descrip-
tion (green circles) is able to reproduce the interaction energy
accurately and tracks the DFT result closely, while the GAFF
description suffers from short- and long-range error in excess of
10 kcal/mol. Further validation will be performed to assess the
predictive power of this model for calculating reaction energies in
solvent. Future theoretical work will focus on three main areas:
(1) deriving polarization energy gradients for the more general

Figure 1. Convergence of solute−solvent interaction energy for a single
diphenylhydramine solute with 330 surrounding water molecules with
reference to a DFT calculation. The arrows indicate the number of DFT
water molecules sufficient to obtain the interaction energy to within
1 kcal/mol under different embedding schemes.
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case of in situ optimized local orbitals, (2) improving the
description of van der Waals interactions and implementing
bonded terms between the QM and MM subsystems, and
(3) investigating more refined models for QM/MM electrostatic
interactions.
2.3. QM/MM with Polarizable MM Using LibEFP and

Q-Chem. LibEFP is an open source library that implements the
effective fragment potential (EFP) method, a first-principles-
based force field.93 While LibEFP was originally designed for
EFP calculations,22,94,95 it can be naturally extended to support
the AMOEBA force field in the Q-Chem program71 for
QM/MM calculations. Again, we are interested in a mutual
polarization model wherein the contribution of AMOEBA’s
permanent multipoles and induced dipoles are included in the
QM Hamiltonian, while the electric field of the QM back-
polarizes the AMOEBA region. The implementation of the
AMOEBA force field in LibEFP involved (a) preparing and
parsing fragment potential data files (“efp” files) using AMOEBA
force field parameters such as permanent multipole moments,
atomic polarizabilities, polarization damping factors, vdW
parameters, and parameters for bonded interactions; (b) using
the local frame to obtain the AMOEBA permanent multipole
moments from values for the reference frame; (c) adding the
van der Waals 7−14 potential used in the AMOEBA force field;
(d) including the contributions from the bonded terms, which
are not included in EFP calculations, where each fragment has a
frozen geometry; and (e) evaluating the permanent and induced
electrostatics of AMOEBA.
The AMOEBA permanent and induced electrostatics can be

handledwithin LibEFP for both nonperiodic and periodic systems.
For nonperiodic systems, the LibEFP code was extended to
accommodate the damping scheme and scalar atomic polar-
izabilities within the AMOEBA force field. For periodic systems,

the PME method,6,96 which partitions the computation
between the direct space (for short-range components) and
the reciprocal space (for long-range components), was added to
the LibEFP library. In the direct space, efficient evaluation of
the electrostatic interactions between permanent multipole
moments was achieved via a formulation in terms of spherical
harmonics.97

With this implementation in place, the AMOEBA force field in
its original formulation can be readily used in QM/MM
calculations together with density functional theory (DFT),
perturbation theory, and other wavefunction-based theories
within the Q-Chem software package. Our current implementa-
tion of DFT/AMOEBA calculations is based on a “double”
self-consistent field optimization scheme; i.e., the total energy of
the QM/MM system is minimized with respect to both electron
density from QM atoms (outer loop) and induced dipoles on
MM atoms (inner loop), which is different from the gradient-
based approach adopted by the ONETEP/TINKER implemen-
tation introduced above. This new capability will enable us
to predict QM/AMOEBA-corrected hydration free energies,
solvatochromism, and many other physical properties. While
the AMOEBA force field as implemented within LibEFP has so
far been tested only in conjunction with the Q-Chem software
package, little effort will be required to get it working
with Psi4,98 NWCHEM,99 and other ab initio electron structure
packages.
Our preliminary results using a single AMOEBA water as an

MM fragment (considering permanent and induced electro-
statics only) indicate the necessity of smearing the monopoles
that correspond to the valence electrons on MM atoms to
describe the electrostatic potential felt by the QM molecule
correctly. One illustrative example is given by Figure 2, where the
response of the electron density on the QMwater (proton donor

Figure 2. Electron density analysis of QM/MM using LibEFP implementation of AMOEBA. Contour plots for the difference between the electron
density of the QM water (the proton donor under the equilibrium water dimer configuration, indicated by the top figure) under the polarizing effect of
the AMOEBA water, and that polarized by the Coulomb potential generated from the converged electron density (and nuclear charges) of the
environment water (“Coulomb embedding”). Left: using unmodified AMOEBA water. Right: using Gaussian-blurred AMOEBA water (with Gaussian
exponents for O: 0.66a0

−2, H: 0.95a0
−2). The blurring is only applied to the permanent monopoles that correspond to valence electrons. Both the

electron density of the QM region and the Coulomb potential of the environment water molecule are computed at the B3LYP/6-311++G(2df, 2pd)
level of theory, and mutual polarization is incorporated in both QM/AMOEBA and QM/“Comloub embedding” calculations. The contours are evenly
spaced at 0.1 e−/Å3, with positive contours/regions indicated by solid lines/warm colors, and negative contours/regions by dashed lines/cold colors.
The black dots indicate the positions of nuclei in the QM region.

The Journal of Physical Chemistry B Feature Article

DOI: 10.1021/acs.jpcb.6b06414
J. Phys. Chem. B 2016, 120, 9811−9832

9816

http://dx.doi.org/10.1021/acs.jpcb.6b06414


in the water dimer) under the polarizing of the AMOEBA water
(proton acceptor) is largely improved when the point monopoles
that represent valence electrons on the latter are replaced by
spherical Gaussian functions100 with widths that are fine-tuned to
reproduce the polarization effect owing to the true QM charge
distribution (converged electron density with nuclear charges) of
the “environment” water molecule. It should be noted that the
smearing of monopoles is only applied when evaluating the
contribution of AMOEBA fragments to the QM Hamiltonian;
i.e., it does not affect the interactions between MM molecules.
Future work may involve developing the parameters or even
improving the model for vdW interactions between QM and
MM regions, especially for the repulsive part of the potential
(corresponding to Pauli repulsion between the interacting
fragments), since it is likely to modulate the QM electron density
significantly.

3. NEW METHODS FOR ADVANCED POTENTIAL
ENERGY SURFACES

3.1. New Approaches to Solving Mutual Polarization.
The mutual polarization in eq 1 is usually solved iteratively at
each time step in a simulation using methods such as successive
over-relaxation (SOR),63 preconditioned conjugate gradient
(PCG),101 or direct inversion in the iterative subspace (DIIS).102

The typical trade off among these methods is that they are either
expensive (such as SOR) or they speed up convergence through
retention of a history of converged mutual dipoles. In molecular
dynamics calculations, this history retention leads to poor energy
conservation through a systematic energy drift. An alternative
approach is to dynamically evolve the polarization degrees of
freedom alongside the “real” atomic system in the form of an
extended Lagrangian (EL).103−105 However, EL formulations
typically suffer from numerical stability issues that can only be
addressed by decreasing the size of the time step, which,
for obvious reasons, is undesirable. In all cases it should be
emphasized that solutions to the mutual polarization are approx-
imate and will lead to numerical accuracy problems that must be
controlled.
A number of new approaches were introduced in 2015 that

offer a better balance between accuracy, speed, and energy
conservation, which we can classify as new approximate models
versus new methods to solve for the mutual polarization
response. In the former category the iAMOEBA model solves
the direct polarization exactly,68 while the 3-AMOEBA model
using single water molecule bodies approximates the N-body
mutual polarization by summing over small dimer or trimer
fragments whose polarization can be solved analytically through
matrix inversion.20 Another example is the extrapolated
perturbation theory optimization (ExPT-Opt3),106 which is
also formulated as an analytical but approximate model to
AMOEBA’s mutual polarization. ExPT begins with the direct
polarization model and then sets up a perturbation theory
approach to obtain a mutual polarization energy functional that
approximates the full induced dipole variational coupling.
In practice the perturbation theory is replaced with an extrapo-
lation scheme that attempts to fit the infinite series solution, and
the quality of said fit depends on the system being studied.
Because these are approximate models that discard part of the full
AMOEBA mutual polarization solution, all three approaches
require some reparameterization of the AMOEBA polarization
parameters to recapture any missing mutual polarization or to
address the system dependence of the model.

By contrast, there are now significantly better methods for
solving mutual polarization of the standard AMOEBA model
directly, beyond the conservative SOR procedure that was the
default solver in the TINKER software platform for two decades.
This changed in 2013 when the SOR was replaced by the more
efficient SCF iterative methods like preconditioned conjugate
gradient (PCG) in TINKER64 and direct inversion in the
iterative subspace (DIIS) for classical polarization calculations in
TINKER-HP.107,108 These offer significant computational
speedups by greatly reducing the number of SCF cycles, and
can be further supplemented by a predictor that extrapolates an
initial guess for the SCF solver from previous SCF solutions at
previous time steps. However, while a predictor may seem like a
straightforward method to reduce SCF cycles, it destroys the
underlying time-reversibility thereby affecting both energy
conservation and convergence. In general a nonpredictor method
will be able to maintain energy conservation at a lower con-
vergence threshold than a predictor method due to its time-
reversibility. For example, AMOEBAwater in the NVE ensemble
with a PCG solver requires approximate convergence thresholds
of 10−6 RMS D with a predictor and 10−3 RMS D without one.
This trade-off between energy conservation, time-reversibility,

and convergence threshold can undermine some of the usefulness
of a traditional predictor. Here we highlight the inertia-restrained
extended Lagrangian/self-consistent field (iEL/SCF) method
that overcomes these problems.72 The iEL/SCFmethod eliminates
the predictor used in PCG and DIIS and allows for the use of a
much more relaxed convergence criteria for SCF iteration.
In general iEL/SCF employs time-reversible propagation in
extended Lagrangian methods in conjunction with numerically
stable SCF iteration. In the spirit of Niklasson et al., who origi-
nally developed the approach for iteratively finding the ground
state density in ab initio molecular dynamics simulations,109−113

we define an extended Lagrangian given by eq 1 for the induced
dipoles used to describe classical polarization:
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where μ⇀N
SCF represents the set of all converged physical induced

dipoles. In eq 6 we have also introduced another set of induced
dipoles, μ⇀N, which are the initial guesses to the iterative solution
of μ⇀N

SCF. This auxiliary set of induced dipoles is restrained to stay
near the true self-consistent values via the final term in eq 6 which
is a harmonic function characterized by a fictitious mass,mμ,i, and
a frequency,ω; the latter is a universal parameter that determines
the curvature of the harmonic well. Application of the Euler−
Lagrange equation of motion to eq 6 in the limit that mμ,i → 0
yields the equations of motion for atomic centers and auxiliary
induced dipoles
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2

SCF, (7b)

Equation 7a shows that equations of motion for the atomic
centers are propagated in the usual way, except that the PCG
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iterative solution to determine μ⇀N
SCF now uses an initial guess that

is propagated by the auxiliary electronic degrees of freedom in
eq 7b. We integrate both equations of motion using time-
reversible velocity Verlet integration,114 and we chose ω to be
√2/Δt, where Δt is the time step, which we set to 1 fs.
We have previously shown72 that this straight adaptation of

Niklasson’s method is insufficient both for decreasing computa-
tional expense and maintaining numerical stability due to problems
that arise from resonances that make the auxiliary dipoles
increasingly poor initial guesses for the SCF solutions of the
physical induced dipoles. More specifically, we showed that the
auxiliary dipoles evolve on a much faster time scale than their
physical counterparts owing to the optimal choice of their
characteristic frequency,√2/Δt, and their direct coupling in the
auxiliary potential (eq 7b) leads to corruption of their dynamics.
To address this problem, we introduced “temperature” control
on the auxiliary set of dipoles, using both Berendsen115 rescaling
and time-reversible Nose−́Hoover chains9,10 as thermostatting
methods, much as is done in Car−Parrinello ab initio MD
calculations.116,117 The set point pseudotemperature of the auxil-
iary system can be determined with an equipartition argument
applied to the harmonic restraining forces experienced by the
auxiliary dipoles.72

The iEL/SCFmethod showsmuch better energy conservation
over a wide range of convergence levels for SCF iteration,
especially compared to typical SCF methods that use a predictor
as the CG-SCF method implemented in TINKER. Furthermore,
since iEL/SCF can employ a looser SCF convergence criterion,
fewer SCF iterations are required, typically half as many.
Moreover, all physical properties predicted using standard SCF
with a tight convergence criterion are well-reproduced by
iEL/SCF with a loose convergence criterion. These include both
equilibrium thermodynamic quantities, such as the average
molecular dipole moment and average potential energy, as well as
dynamical properties such as the diffusion constant (Table 1).
3.2. Increasing the Molecular Simulation Time Step for

AMOEBA. Most properties of interest in a condensed-phase
system are connected to low-frequency, long time scale phe-
nomena. However, converging such properties generally requires

many small time steps the size of which is dictated by the
simultaneous presence of the highest-frequency motions in the
system. The fundamental problem posed by the need for a small
time step corresponding to the fastest evolving degrees of
freedom can be addressed via multiple time step algorithms such
as r-RESPA.66 This approach is based on the recognition that
forces evolving on different time scales may be evaluated at
different time intervals. More specifically, the forces due to the
faster covalent terms are evaluated more frequently, and the
more slowly evolving forces due to noncovalent interactions are
evaluated less frequently, all within a symplectic framework.
The computational savings garnered derive from the fact that the
cost of the force calculation in classical MD is dominated by the
nonbonded contributions, a cost that is substantially lowered
when the number of such force evaluations is thus reduced.
Standard multiple time step (MTS) approaches are limited,

however, by resonance phenomena, wherein motion on the
fastest time scales poses a typical limit on the size of the time step
that may be used for the calculation of the slowly evolving
noncovalent forces. In atomistic models of biomolecular systems,
for example, the largest time step is around 3−5 fs. Previously,
Tuckerman and co-workers introduced an isokinetic extended
phase-space algorithm118 and its stochastic analogue119 that
eliminate resonance phenomena through a set of kinetic energy
constraints. Using such constraints, a time step of nearly 100 fs
could be employed for the slowly evolving forces in a simulation
of liquid water using a fixed-charge flexible model.
Tuckerman and co-workers have been able to extend the

stochastic resonance-free approach, termed stochastic isokinetic
Nose−́Hoover (RESPA) or SIN(R), of Leimkuhler et al.119 to
polarizable models formulated in terms of fluctuating induced
dipole moments.73 Note that SIN can be used as a canonical
sampling method with or without a RESPA66 MTS decom-
position. Typical MTS algorithms for fixed-charge force fields
involve decomposing the forces into bonded forces, short-range
nonbonded forces, and long-range nonbonded forces. Although
the forces in polarizable models cannot be explicitly decomposed
in this fashion, the concept can, nevertheless, be adapted to the
polarizable case by introducing a short-ranged induced dipole

Table 1. AMOEBA Properties as a Function of Mutual Induction Convergence for a Standard PCG with Predictor and the iEL/SCF
Method Using a Nose−́Hoover Chain for Auxiliary Pseudotemperature Control72 ,a

convergence (RMS change Debye) av potential energy (kcal/mol) av molecular dipole (Debye) diffusion coeff (10−5 cm2/s)

Standard SCF
10−6 −8.84 ± 0.09 2.742 ± 0.014 2.22 ± 0.29
10−5 −8.83 ± 0.08 2.742 ± 0.012 2.26 ± 0.14
10−4 −8.84 ± 0.08 2.744 ± 0.013 3.45 ± 0.28
10−3 −8.83 ± 0.09 2.743 ± 0.013 2.71 ± 0.22
10−2 −8.84 ± 0.09 2.743 ± 0.013 0.0019 ± 0.00021
10−1 −8.67 ± 0.09 2.703 ± 0.013 0.0020 ± 0.00025

iEL/SCF
10−6 −8.83 ± 0.09 2.742 ± 0.013 2.36 ± 0.14
10−5 −8.83 ± 0.09 2.743 ± 0.013 2.30 ± 0.14
10−4 −8.84 ± 0.08 2.743 ± 0.013 2.27 ± 0.15
10−3 −8.84 ± 0.09 2.743 ± 0.013 2.43 ± 0.18
10−2 −8.83 ± 0.08 2.742 ± 0.013 2.37 ± 0.20
10−1 −8.84 ± 0.08 2.744 ± 0.013 2.17 ± 0.11

aAverage potential energy and molecular dipole were calculated from NVT simulations at 298.0 K. Diffusion coefficients were averaged over multiple
NVE simulations using independent snapshots from 298.0 K NVT simulations as the initial condition. The simulation protocol consisted of a
velocity Verlet integrator with a time step of 1.0 fs, a 9.0 Å vdW cutoff with smoothing, and a 7.0 Å real-space cutoff for particle-mesh Ewald (PME)
electrostatics.
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moment calculation based on a spherical cutoff, rcut, which is then
used to construct induced dipole forces in the short-range steps.
These short-range dipoles are given by the equation

∑ ∑μ α μ γ
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This is then corrected in long-range force steps by performing
a full calculation of the induced dipole moments and subtracting
the short-range contribution, where the full dipole calculation
follows the usual prescription of eq 3. All pairwise forces are
decomposed into short- and long-range contributions in the
standard fashion using a spherical cutoff, and reciprocal-space
forces coming from Ewald summation are evaluated with
the long-range forces, forming a scheme we call RESPA1-pol.
This approach has been implemented in the TINKER7 software
package, and in MD simulations of 512 AMOEBA water
molecules in a periodic cubic box of length 24.85 Å, it is
found that the time step for the expensive long-range calcu-
lations can be increased to 120 fs with no degradation in
the equilibrium properties. This is illustrated for the oxygen−
oxygen and oxygen−hydrogen RDFs in Figure 3a,b. Impor-
tantly, we obtain computational speedup factors ranging
between 10 and 25, depending on the choice of simulation param-
eters (see Figure 3c).
3.3. New Formulations of Electrostatic Multipolar

Interactions. Developing software that implements multipolar
electrostatics interactions for molecular dynamics engines in
a parallel, efficient, and sustainable manner presents many
challenges. Despite the wealth of theoretical and methodological
work, only a few software projects have dealt with these
challenges including DL_MULTI,120 TINKER,64 Amber,2 and
CHARMM.3 It is worth noting that DL_MULTI implements the
multipolar expansion up to hexadecapole moments using a
formulation in terms of spherical harmonics whereas TINKER
limits the expansion to quadrupole moments on point centered
multipoles (within flexible molecules, i.e., no rigidification
restrictions) using a Cartesian formulation. Both software
packages rely on replicated data parallelization, which is not
memory distributed and is known to suffer from memory over-
heads with large model system sizes and prohibitive commu-
nication overheads on anything beyond moderate processor
counts (∼100).
The GDMA program90 used to define multipole electrostatics

allows for generation of multipoles up to tenth order if it is
desired to include multipoles beyond quadrupoles as is currently
the practice for AMOEBA development. One of the main new
contributions to the DL_POLY121 and CHARMM software
packages is the generalization of multipolar particle-mesh Ewald
(PME) to arbitrary order that builds on previous work on fixed
charges, dipoles, quadrupoles, and hexadecapoles. It is hoped
that these new methods will lower the barrier for using higher
order multipoles in future developments of other advanced
potential energy models and their software implementations.
The key idea of PME is to approximate the structure factor on

a uniform grid in 3 dimensions that fills the simulation cell.
We have derived a closed form formula for arbitrary order
multidimensional derivatives of the product of three B-splines
which is required for the extension of the reciprocal space PME
to arbitrary order, as well as for the stress tensor needed for
constant pressure simulations, and provided a simple procedure

for the B-spline computation using particle-mesh Ewald.74

That study also provided recurrence relations for the Coulomb
sum, force-shifted Coulomb, Coulomb sum with distance
dependent dielectric, and reaction field, which allows for a
simple implementation of permanent multipoles up to arbitrary
order with potentials other than the Ewald sum. While there has
already been work in this direction by Nymand and Linse122 and
Brommer et al.,123 Boateng and Todorov provided an alternative
recurrence relation for the real-space kernel of the Ewald sum.74

Furthermore, it was shown in their work that there is a Cartesian
recurrence relation that has cubic scaling in the order of multi-
pole used, which is equivalent to the scaling of a recently
developed spherical harmonic version of the real space that also
achieves cubic scaling by Simmonett et al. and implemented in
CHARMM;97 both improve on the original scaling of the Boys
recurrence in the original PME formulation7 which is quartic in
the multipole order. The development of the new Cartesian
multipolar approach has now been integrated efficiently within

Figure 3. Three resonance-free stochastic isokinetic Nose−́Hoover
(RESPA) or SIN(R) calculations are compared to an NVT benchmark
using Nose−́Hoover chains for a cubic, periodic box of length 24.85 Å
containing 512 water molecules. Each SIN(R) calculation decomposes
the forces into bonded, short-range nonbonded (including short-range
induced dipoles), and long-range nonbonded terms. In the XO-SIN(R)
calculation, the Nose−́Hoover coupling is applied on the long-range
time scale; in the XM-SIN(R) calculation, it is applied on the short-
range time scale; and in the XI-SIN(R) calculation, it is applied on the
bonded time scale. In all calculations, the bonded time step is 0.5 fs, and
the short-range time step is 3.0 fs. The long-range time step is 75 fs in
XO-SIN(R), and it is 120 fs in the XM-SIN(R) and XI-SIN(R)
calculations. In all SIN(R) calculations, the short-range electrostatic
real-space cutoff is 5.0 Å, and the short-range van der Waals cutoff is
7.0 Å. All production runs are 150 ps long. (a) The oxygen−oxygen and
(b) oxygen−hydrogen radial distribution functions for all simulations
using a 10.4 Å real-space cutoff. (c) The speedup obtained in each
SIN(R) simulation compared to the NVT benchmark for different
values of the long-range real-space cutoff. Adapted with permission from
ref 73. Copyright 2016 American Chemical Society.
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DL_POLY_4’s domain decomposition framework to utilize the
performance advantages of SPME96,124,125 for the Ewald case.
3.4. Approaching the Basis Set Limit for DFT

Calculations with Advanced Functionals. The performance
of QM/MM methods is limited not just by errors in treating the
QM/MM boundary or limitations of the force field, but also by
the inexactness of the QM model itself. Fortunately, the statis-
tical errors of standard density functionals like PBE-D3126,127 can
be reduced by roughly a factor of 2 for thermochemistry (TC)
and noncovalent (NC) interactions by recently developed
density functionals, such as ωB97X-V128 and B97M-V.129

The latter has the computational advantage of not requiring
exact exchange (which necessarily leads to larger errors for self-
interaction sensitive problems).
It is important to emphasize that such impressive improve-

ments in accuracy are only achieved when very large atomic
orbital basis sets are used (ideally beyond triple-ζ, for instance,
the quadruple-ζ def2-QZVPPD basis).130 However, in conven-
tional quantum chemistry, the cost of approaching the
one-particle basis set limit is very high, scaling at least as O(n3)
with the number of functions per atom, due to Fock matrix
element evaluation and diagonalization costs. Therefore, prac-
tical DFT calculations are typically performed with smaller basis
sets, and it is an important challenge in quantum chemistry to
reduce the cost of large-basis calculations. Indeed, DFT-based
ab initio molecular dynamics calculations of pure water and
aqueous solutions using fully converged discrete variable
representation basis sets show that both structural and dynamical
properties are sensitive to the size of the basis set.131−137 Examples
of existing approaches that help defray the computational cost are
the use of resolution of the identity (RI) approximations for the
Coulomb and exchange interactions,138−141 which are nowadays
standard, as well as the dual-basis SCF methods.142,143

In order to approach the basis set limit with potentially lower
computational effort, we have been working on a new SCF
scheme using a minimal adaptive basis (MAB) consisting of
functions that are variationally optimized on each atomic site.75

We shall review this approach briefly, which aims to reproduce
the accuracy of large-basis SCF calculations. It involves a
sequence of four steps to produce the final energy.
The first step is to project the small 6-31+G(d) basis into the

large target basis, and to perform an SCF calculation in this
projected basis (of the small-basis dimension) in order to obtain
a reference one-particle density matrix, Pref. Relative to full SCF,
this offers a cost reduction of (N/P)3 where N is the target basis
rank and P is the rank of the 6-31+G(d) basis. The second step is
then to find theMAB by minimizing a judiciously chosen energy-
like function:

=L RSP SRFTr[ ]ref (9)

This function depends only on the converged Fock matrix, F,
corresponding to Pref, so iterative minimization involves only
linear algebraic operations. Equation 9 is minimized with respect
to the elements of an atom-blocked transformation, B, from the
large target basis to the MAB representation, and this atom-
blocking reduces the scaling of many linear algebra steps from
cubic to quadratic. B determines the span of the minimum basis,
R, through R = Bσ−1BT, where σ = BTSB and S is the atomic
orbital overlap matrix.
The third step involves performing an SCF calculation in the

MAB, which yields a cost reduction of (N/M)3 relative to the
target basis SCF, whereM is the rank of a minimal basis. Finally,
in the fourth step, the desired accuracy is obtained by applying a

perturbative correction (PC) to the SCF/MAB solution. For a
pure functional like B97M-V, the PC simply uses the converged
MAB Fock matrix, similar to dual-basis SCF methods:142,143

∑ ε ε= − −E E F /( )
ia

ai a itot MAB
2

(10)

The sum runs over occupied orbitals, i, and virtual orbitals, a, and
ε refers to semicanonicalized Kohn−Sham eigenvalues. This
expression requires solution of a single large system of linear
equations, giving a speedup relative to conventional SCF that is
greater than the typical iteration count (between 10 and 20).
Compared to exact SCF results using the modern B97M-V

density functional, using this MAB-SCF (PC) approach with the
same target basis set produces <0.1 kcal/mol RMS errors for
tested TC data, and less than 0.05 kcal/mol for the NC data.
Hence, the performance of modern density functionals near the
basis set limit can be quite faithfully reproduced. As an illu-
stration of the resulting accuracy near the basis set limit, Figure 4

shows the results of accuracy tests on 5 NC datasets using
B97M-V, as computed with theMAB approach and conventional
SCF in the def2-QZVPPD basis; the results are also compared to
the best available reference data.
Two points emerge clearly from these tests. First, the B97M-V

density functional yields quite small RMS deviations against the
reference data. To see how small, consider that the data points in
H2OBind8, for instance, represent the binding energies of water
hexamers that are each 40−50 kcal/mol in magnitude. In terms
of accuracy, these results are close to the best that is currently
possible with DFT. Second, the difference between the con-
ventional large-basis calculations and the MAB-based calcu-
lations is a factor roughly 10 times smaller than the intrinsic error
associated with the B97M-V density functional. Thus, the MAB-
based model, indeed, successfully approaches the basis set limit,
as was our goal.
Finally, we should note a few caveats and limitations. First,

molecules that contain hypervalent atoms require extra MAB
functions beyond a standard minimum basis dimension. This is

Figure 4. RMS errors obtained from conventional SCF calculations and
the MAB approach using the B97M-V density functional in a large def-
QZVPPD basis, for five datasets for NC: A24 contains 24 small molecule
intermolecular interactions energies,169 S22 contains 22 diverse
intermolecular interactions,170,171 HB15 contains binding energies of
hydrogen-bonded dimers featuring ionic groups common in bio-
molecules,172 H2O6Bind8 contains binding energies of 8 isomers of the
water hexamer,173,174 and FmH2O10 contains binding energies of
10 configurations of F−(H2O)10.

173,174 Adapted with permission from
ref 75. Copyright 2016 AIP Publishing.
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accommodated by a threshold-driven adaptive scheme. Second,
the excellent accuracy shown for pure functionals can only be
matched for hybrid functionals if a more sophisticated (and
computationally twice as costly) PC is used at twice the compu-
tational cost. Third, and most important, our present imple-
mentation in Q-Chem71 is a pilot implementation which does
not yet optimize the savings that are possible for matrix element
evaluation, although it is nearly optimal with regard to the linear
algebra effort. In conclusion, with further improvements in its
implementation, MAB-SCF (PC) could be a promising low-cost
substitute for its conventional counterpart to viably approach the
basis set limit of modern density functionals.

4. SOFTWARE IMPROVEMENTS

4.1. OpenMP Performance Optimization for AMOEBA
in TINKER. A primary objective of the consortium work has been
to improve performance on CPUs with regard to the canonical
implementation code, TINKER, starting with improvements to
the existing OpenMP framework which is most suitable for
running on in-house commodity clusters. In this case, original
versions of the reference implementation of AMOEBA in the
TINKER software were based on explicit Cartesian multipole
formula for the energy and gradient charge−charge multipole
interactions up to quadrupole−quadrupole multipole inter-
actions. Thole damping of induced dipole interactions was
handled as a special case, and computed in-line as part of the
energy and gradient (force) calculations. In an attempt to
streamline the TINKER code and make it easier to add
modifications such as explicit charge penetration effects,52,53

the latest version of TINKER computes and stores the
electrostatic potential, electric field, electric field gradient, and
electric field Hessian due to permanent multipole moments, and
corresponding quantities for the induced dipoles, during the
initial solution of the polarization equations, eq 3. This greatly
simplifies the subsequent calculation of the energy and gradient.
For example, the polarization energy is then just the dot product
of the induced dipoles with the electric field. In addition this
refactoring allows easy testing of alternative short-range damping
functions since changes are only needed in the field and its
gradients, without any alteration of the energy and gradient code.
4.2. OpenMP/MPI Performance Optimization in

TINKER and TINKER-HP. Recently we have implemented a
parallel hybrid MPI/OpenMP replicated data (atom-decom-
position) scheme that is most suitable for running iAMOEBA in
TINKER on HPC platforms having a fast node interconnect.
In this case we sought to reduce the computational expense by

precalculating and saving the tensor elements corresponding to
the permanent field and field gradient. For instance, for a multi-
pole site i interacting with an induced dipole site j, we would have
the following derivative terms of the permanent field
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all of which would need to be saved. The direct contribution to
the polarization energy is calculated simply as the dot product of
induced dipole and the saved permanent field. The direct
polarization contributions to the gradient and internal virial are
then calculated by iterating over the saved tensor elements.
The resulting tensor method, on its own, was found to be a
computationally advantageous method for the direct polarization
calculation using the iAMOEBA model, in particular, which is
finding increased popularity within the water community.
Hybrid MPI/OpenMP parallel timings in nanoseconds

per day were extrapolated from short molecular dynamics
simulations of 100−2000 time steps using the velocity Verlet
integrator, a 1 fs time step, a 9.0 Å vdW cutoff, and a 7.0 Å
real-space cutoff for particle-mesh Ewald (PME) electrostatics,
and using both small numbers (384 or 768) up to large numbers
(3072−6144) of cores on system sizes ranging from 1600 to
288 000 water molecules. The reference TINKER7 code is
parallelized in the shared-memory regime with OpenMP, so all
timing comparisons with the reference TINKER7 were obtained
using 12 OpenMP threads that gave the best speedup. Table 2
presents the timings and speedups for the hybrid MPI/OpenMP
implementation, with the tensor method achieving a factor of
∼4.5 for low numbers of cores and up to a factor of ∼7.9 with a
larger numbers of cores.
The very nature of the MBE approximation admits a trivial

parallel implementation for the approximate mutual polarization
model 3-AMOEBA, as the polarization energy, gradient, and
virial of the subsystems are independent of one another. Again,
we use a hybrid MPI/OpenMP approach, and a load-balancing
scheme is implemented that ensures that the work of calculating

Table 2. CPU Performance of TINKER7 MD Simulations for iAMOEBAa

timings in ns/day for iAMOEBA

water system
no. of atoms

std TINKER
(OpenMP only) tensor iAMOEBA (OpenMP/MPI using 384−768 cores)

tensor iAMOEBA (OpenMP/MPI
using 3072 cores)

4800 2.116 8.388 (4.0)
21 000 0.524 2.44 (4.7) 3.180 (6.1)
96 000 0.106 0.45 (4.3) 0.760 (7.2)
288 000 0.030 0.13 (4.5) 0.236 (7.9)
864 000 0.008 0.062 (7.8)

aCPU timings are given for water boxes ranging from 4800 to 864 000 atoms for the direct polarization model iAMOEBA. The simulations used a
velocity Verlet integrator114 with a 1.0 fs time step, a 9.0 Å vdW cutoff, and a 7.0 Å real-space cutoff for particle-mesh Ewald (PME) electrostatics.
Timings are reported in nanoseconds/day, and speedups (in parentheses) are calculated with respect to timings corresponding to the best
iAMOEBA OpenMP implementation in TINKER7. We compare the hybrid MPI/OpenMP implementation in TINKER7 using small and large
numbers of cores. All timing results were obtained on a Cray XC30 using 12-core Intel “Ivy Bridge” processor at 2.4 GHz, 24 cores per node.
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the polarization energy, gradient, and virial is distributed as
evenly as possible among the MPI tasks. Table 3 shows that the
approximate 3-AMOEBA model is faster by factors of 2 to 11
compared to the parent AMOEBA potential, depending on the
fragment size that defines a body n, and the total system size N.
The 3-body approximation by its very nature imposes more work
but trivial parallelization compared to the AMOEBA model.
In the process of improving the accuracy of polarization gradients
under the 3-body approximation, we have fortuitously amelio-
rated this problem by concomitantly increasing the size of the
fragment, thereby reducing the number of fragments. Nonethe-
less, the computational speedup of our method relies on the
simultaneous calculation of 1-, 2-, and 3-body contributions
to the energy, gradient, and virial, with each MPI task dedicated
to a single subsystem calculation, thereby necessitating up to
3600 cores. In an era of exascale computing, the 3-AMOEBA
would be highly suitable as a refactored form of the AMOEBA
potential. In contrast to 3-AMOEBA, the direct polarization
model of iAMOEBA does not suffer from a curse of numbers of
independent calculations, and computational speedups over the
reference TINKER7 implementation may be realized with a few
hundred cores.
The recently developed TINKER-HP software provides a new

implementation of AMOEBA for high-throughput production
calculations on CPUs. TINKER-HP is a distributed memory
version of the core AMOEBA energy and force functions using
MPI parallelization. Previous results have shown good scaling on
the polarizable multipole PME electrostatics calculations that are
a major computational bottleneck in AMOEBA simulations.52

The TINKER-HP code has now been extended to perform full
AMOEBA molecular dynamics and minimization calculations.
Excellent scaling performance is observed for AMOEBA MD
simulation across thousands of cores for large systems such as the
3.5 million atom solvated ribosome complex. Once testing is
complete, the code for TINKER-HP will be released to a public
GitHub site, and we anticipate it may become the implementa-
tion of choice for AMOEBA calculations on large-scale, high-
performance distributed computer systems.
4.3. OpenMM for GPU-Based Calculations with

AMOEBA. The OpenMM software5 (http://openmm.org) devel-
oped by the Simbios Center at Stanford University is highly
optimized to perform MD simulations on graphical process-
ing units (GPUs). It is part of the Omnia software suite
(http://omnia.md), a collection of interoperating tools for bio-
molecular simulation. It can be used either as a standalone
simulation package, or as a library to perform calculations within

other applications. It has supported the AMOEBA force field
since version 3.0, released in 2011.
AMOEBA simulations can be run with OpenMM in several

different ways. One option is to use it as a standalone package,
writing a Python control script to direct the details of the
simulation. Alternatively, a set of scripts is available to automate
the preparation and running of simulations (https://github.
com/apes-soft/OMM_Amoeba_Scripts). Finally, there is a
GitHub repository containing the TINKER interface to
OpenMM (with modifications to base OpenMM specific to
AMOEBA calculations) at https://github.com/pren/TINKER-
openmm. This allows users to run simulations with TINKER
while having the calculations be done by OpenMM on a GPU.
The advantage of running the simulation directly in Python

(rather than through TINKER) is that this provides access to a
wider range of popular output file formats such as DCD or
NetCDF binary trajectory files, as well as established reversible
reference system propagator algorithm (RESPA) multitime
stepping integrators66,118 that are currently available only
through the OpenMM Python interface. Furthermore, it
eliminates the requirement that TINKER be installed on the
machine used to run the simulation (although at the expense of
requiring Python to be available).
The first approach requires using the OpenMM modeling

toolkit to parametrize a structure defined in a PDB or PDBx/
mmCIF file containing standard biomolecular residues, water,
and basic ions. This process is automated through one of the
scripts in the aforementioned GitHub repository. This approach
is the simplest to execute, as it requires only installing OpenMM
(which is done using the conda package manager in a simple
manner) and executing a preparatory script on a lightly curated
PDB file. It is limited, however, in that it works only for standard
amino and nucleic acid residues as well as water and a small
number of common monatomic ions.
Applying the AMOEBA force field to systems containing

nonstandard residues or nonstandard post-translational mod-
ifications requires TINKER to generate a serialized representa-
tion that can later be used to run a simulation using anOpenMM-
powered Python script. This approach is the most flexible, since
it utilizes the de facto reference implementation of AMOEBA to
reliably parametrize the target system. However, it also requires
users to install not only OpenMM, but also TINKER and the
TINKER-OpenMM interface. Since there are no precompiled
binaries for this package and development on this functionality is
occurring rapidly, it can be difficult to even install the prerequisite
software to execute this workflow. Furthermore, OpenMM

Table 3. CPU Performance of TINKER7 MD Simulations for AMOEBA and 3-AMOEBA Modelsa

timings in ns/day for AMOEBA

N = no. of
water molecules

std AMOEBA
in TINKER

3-AMOEBA
(body = N/10 molecules)

3-AMOEBA
(body = N/20 molecules)

3-AMOEBA
(body = N/30 molecules)

1600 1.63 5.54 (3.4) 8.04 (4.9) 6.28 (3.9)
7000 0.36 1.04 (2.9) 1.41 (3.9) 2.56 (7.1)

32 000 0.07 0.23 (3.2) 0.44 (6.1) 0.54 (7.5)
96 000 0.02 0.05 (2.5) 0.12 (5.9) 0.18 (9.2)
288 000 0.005 0.01 (1.8) 0.04 (7.7) 0.06 (10.8)

aCPU timings are given for water boxes ranging from 4800 to 864 000 atoms for the mutual polarization model AMOEBA and fragments of different
sized k-means clusters under the many-body approximations for 3-AMOEBA. The simulations used a velocity Verlet integrator114 with a 1.0 fs time
step, a 9.0 Å vdW cutoff, and a 7.0 Å real-space cutoff for particle-mesh Ewald (PME) electrostatics. Timings are reported in nanoseconds/day, and
speedups (in parentheses) are calculated with respect to timings corresponding to the best AMOEBA OpenMP implementation in TINKER7.
Timing results were obtained on a Cray XC30 using 12-core Intel “Ivy Bridge” processor at 2.4 GHz, 24 cores per node. All 3-AMOEBA results were
fixed at 3600 cores. Adapted with permission from ref 69. Copyright 2016 American Chemical Society.
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seems to bemore tolerant of variations in PDB files, meaning that
this second approach involving TINKER also requires curating
the PDB files muchmore carefully. We have generally found that,
for systems that are capable of being parametrized entirely using
OpenMM, setting up an AMOEBA simulation using the first
approach is substantially more efficient.
Table 4 shows the total throughput of AMOEBA MD simu-

lations on a single commodity NVIDIA GTX 980 GPU card via

the TINKER-OpenMM interface running in “mixed” precision.
Mixed precision means that the calculated forces, the bottleneck
in all MD calculation, are evaluated in single precision to provide
the maximum speedups, whereas the accumulation of these
interactions as well as the actual integration step (update of
positions, velocities and accelerations) are taken in either double
or fixed precision to improve the accuracy. Table 4 also reports
double precision timings in OpenMM generated on the Tesla
K80 GPUs. We note the speedup on GPUs running double
precision is ∼5 times faster, whereas using mixed precision is
roughly 10−20 times faster, than that available with double
precision versions of TINKER running OpenMP parallelization
on traditional multicore CPU compute nodes. In addition,
speedup doubles when using the iELSCF72 method or ExPT/
Opt3106 model for solving for mutual polarization, and effective
time scales could be much longer if the new MTS scheme73 of
section 3.2 was used for this test. The ability to run 100 ns
simulations in a reasonable time on small- to medium-sized

proteins opens up the possibility of using AMOEBA to perform a
wide range of ligand and drug-binding free energy calculations or
long biomolecular simulations in which sampling is important,
for example for intrinsically disordered proteins.

5. VALIDATION AND APPLICATIONS

5.1. Validation Studies of the AMOEBA Potential.
A major objective of the AMOEBA force field since its inception
has been to produce a tractable model for rapidly computing
physics-based binding energetics in host−guest and protein−
ligand systems. Figure 5 shows results from application of the

AMOEBA model to the host−guest binding challenge from the
SAMPL4 exercise.144 All of the ligands are organic ammonium
cations, and they are bound to cucurbit[7]uril (CB7), which is
well-known to interact with cations via its rings of carbonyl
oxygen atoms. The interior of the CB7 barrel is much less polar
than its carbonyl-based portals, and is able to bind hydrophobic
alkyl and aryl moieties. The predicted free energies in Figure 5
represent absolute binding energies computed from molecular
dynamics (MD) sampling via a standard double-decoupling
method145 and the Bennett acceptance ratio (BAR) protocol.146

Of the roughly 20 prediction sets submitted for the SAMPL4
CB7 host−guest series, the AMOEBA results were at or near the
best reported. The AMOEBA results exhibit over binding for
multiply charged guests; i.e., guests 1, 4, and 9 are all dications,
while the other guest are all singly charged. The largest individual
error is for guest 5, which is by far the smallest of the 14 and is
under bound compared to experiment. Short 1 ns MD windows
were used in the BAR free energy calculations, and work to
determine the effect of the method and extent of sampling is in
progress.147 AMOEBA has recently been applied to the corre-
sponding host−guest systems from the SAMPL5 exercise, and
those results will be made available in due course.
Of course the blind prediction outcomes using AMOEBA

in this and other SAMPL exercises148 provide impetus for
improving the AMOEBA force field. Electronic structure
calculations have been routinely used to provide training data
for the parametrization of molecular mechanics force fields, and

Table 4. GPU Performance of TINKER-OpenMM MD
Simulationsa

timings in ns/day for AMOEBA

systemb
no. of
atoms

OpenMM
(double precision)
using standard
SCF solver

OpenMM
(single precision)
using standard
SCF solver

OpenMM
(single precision)

using new
SCF solvers

water (small) 648 32.47 65.64

crambin crystal 1920 24.02 49.65

CBClip complex 6432 12.45 23.22

DHFR (JAC) 23 558 5.49 9.97

water (medium) 96 000 0.201 1.458 2.29

water (large) 288 000 0.065 0.393 0.640

water (x-large) 864 000 0.021 0.126 0.183
aGPU timings are reported on various small to large water boxes
ranging from 4800 to 864 000 atoms and 3 different protein systems
for the mutual polarization model AMOEBA. The simulation protocol
consisted of a standard RESPA66 integrator based on the separation of
intra- and intermolecular forces with respective time steps of 1.0 and
2.0 fs, a 9.0 Å vdW cutoff, and a 7.0 Å real-space cutoff for particle-
mesh Ewald (PME) electrostatics. The single precision simulations
used the TINKER-OpenMM interface on an NVIDIA GTX 980 GPU
hosted on a MacPro 1.1 desktop machine. The software environment
consisted of Mac OSX 10.11.4 and CUDA 7.5 and the Intel C++ and
Fortran V15.0 compilers. The double precision simulations were run
directly with OpenMM on an NVIDIA K80 GPU. The environment
consisted of Red Hat Enterprise Linux 6.7, CUDA 7.5, and GCC 4.4.7.
bDetails of systems follow. Water (drop): 216 AMOEBA water mole-
cules in a 18.643 Å cubic periodic box. Crambin crystal: two crambin
chains, EtOH, and water in monoclinic unit cell (PDB: 3NIR).
CBClip-Guest 2: cucurbituril-based host plus guest 2 from SAMPL5 in
40.0 Å cubic box. DHFR (JAC): joint Amber-CHARMM benchmark,
DHFR, and water in 62.23 Å cubic box. Water (puddle): 32 000
AMOEBA water molecules in a 98.65 Å cubic periodic box. Water
(lake): 96 000 AMOEBA water molecules in a 142.27 Å cubic periodic
box. Water (ocean): 288 000 AMOEBA water molecules in a 205.19 Å
cubic periodic box.

Figure 5. Calculated vs experimental binding free energies for 14
organic ammonium guest species complexed with cucurbit[7]uril as the
host. The overall system and the numbering of the guests is the same is
used for the SAMPL4 exercise.144 The shaded region includes data
points within 1.5 kcal/mol of the experimental free energy value.
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can provide useful benchmarks for properties such as inter-
action energies on molecular systems outside the original
training set. Although the overall QM interaction energy is
often used to validate a classical force field, the advent of energy
decomposition analysis (EDA) affords a new way to indepen-
dently quantify the individual contributions of several physi-
cally meaningful terms out of the QM interaction energy, e.g.,
permanent electrostatics, polarization, dispersion, and charge
transfer.149−151 Therefore, by comparing the corresponding
terms between an EDA scheme and a molecular mechanics poten-
tial, one can obtain insight into the strengths andweaknesses of the
force field of interest.
Several popular categories of EDA methods include symmetry-

adapted perturbation theory (SAPT),152−154 and variational
methods that originate from the Kituara−Morokuma EDA
formalism,149,155−160 including the absolutely localized molec-
ular orbital (ALMO)-EDA developed by Head-Gordon and
co-workers.161−163 In recently submitted work, we have used the
second generation of (ALMO)-EDA,164−166,175 combined with the
high-quality ωB97X-V density functional,128 to compare against
the energy decomposition of terms in the AMOEBA potential for
the water dimer and various simple ion−water dimers,76 an
example of which is shown in Figure 6. For those interactions, we
showed that the ωB97X-V/def2-QZVPPD level of theory is
virtually equivalent to reference CCSD(T) calculations at the
complete basis set limit,76 at a fraction of the computational
cost, as CCSD(T) scales as O(N7). Furthermore, the recent
development of the fragment electric field response function
model has enabled a meaningful complete basis set limit to be
reached for polarization and charge transfer in the second
generation ALMO-EDA approach.164

Figure 6a shows the total interaction energy for the potassium−
water dimer as a function of the K+−Ow distance, in which it is
notable that AMOEBA gives quite good agreement for the
equilibrium distance and binding energy when compared to the
ωB97X-V benchmark using a def2-QZVPPD basis set.130

However, the breakdown into energy components in Figure 6b
shows that while AMOEBA’s polarization potential is almost
perfect near and beyond the equilibrium position, the primary
total electrostatic error resides in the permanent multipole
contribution, which is far too unfavorable. This discrepancy in
permanent electrostatics could largely be ameliorated through
introduction of the charge penetration effect into the AMOEBA
model. Nonetheless, Figure 6c emphasizes several aspects of the
cancellation of errors at play that can explain the overall excellent
result in Figure 6a. First is that while the inclusion of charge
transfer does improve the agreement between AMOEBA and
EDA’s repulsive part of the vdW potential, there is still a
remarkable difference in that the wall is still too soft while the
dispersion is too favorable compared to ALMO-EDA, which
seems to be able to compensate almost perfectly for AMOEBA’s
less favorable total electrostatics.
We anticipate that high-quality EDA approaches may be a

particularly fruitful scheme for advanced molecular mechanics
potential that, when combined with automated force field param-
etrization,45,83,84 may yield next generation force fields with
greatly improved accuracy by more correctly accounting for the
individual energy components of the total QM interaction. Alter-
natively, EDA results can guide the intelligent inclusion of some
effects (e.g., CP), while others are neglected implicitly (e.g., CT)
and lumped into a less-softened repulsive wall of the van der
Waals potential.

5.2. Large-Scale Applications of the AMOEBA Poten-
tial. Similar to the ion−water interaction potentials, force fields
for macromolecules are universally constructed from fragments
(such as amino acids) whose parameters come from studies of
even smaller molecules. In general, one has to check that the
“emergent” properties of macromolecules are faithfully repre-
sented when the fragments are combined; this may be of special
concern for polarizable potentials, where mutual polarization is a
nonadditive property. On the basis of advances in previous
sections, we have carried out some of the first very longMD simu-
lations using the AMOEBA potential on three small, globular

Figure 6. Distance dependence of the total interaction energy and its
breakdowns (in kJ/mol) for the potassium ion−water dimer: (a) total
interaction energy, (b) permanent and induced electrostatics, (c) vdW
interaction. In part a, the inset plot shows the zoomed-in near-
equilibrium region in the units of kT, and the arrows indicate the
location of energy minima for QM and AMOEBA interactions. For parts
b and c, the dash-dotted lines indicate the position of QM minimum.
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proteins: fragment B3 of protein G (“GB3”, 61 residues), hen
lysozyme (129 residues), and cyclophilin A (161 residues).
Figure 7 shows the time dependence of the root-mean-square
(rms) deviation of the backbone atoms from the crystal confor-
mation for the three proteins, comparing AMOEBA with two
recent fixed-charge force fields. The primary conclusion is that
the folded state of proteins using the AMOEBA potential is
within error bounds of that obtained using current fixed-charge
force fields, the latter of which have had decades of training and
tuning to obtain specific desired results.
We have also applied AMOEBA to the calculation of the

electric fields of cyclophilin A. Cyclophilin A is one of a family
of peptidylprolyl isomerases catalyzing the interconversion
between cis and trans proline in peptide substrates. Recently, a
novel “electrostatic handle” catalytic mechanism was proposed
using molecular dynamics from which snapshots were evaluated
with quantum mechanical calculations, whereby the surrounding
protein exerts a directionally oriented environmental field on
the substrate peptide bond, stabilizing the transition state of the
cis/trans interconversion (Figure 8).167,168 Since the AMOEBA
force field has previously been shown to accurately recreate the
environmental field strengths exerted on an acetophenone probe

by a variety of solvents, and has been used to calibrate experi-
mental frequency shifts observed in vibrational Stark effect
spectroscopy,14 we investigated the ability of AMOEBA to
recreate proposed environmental field strengths in the enzyme
cyclophilin A.
Field strengths observed during AMOEBA MD simulations

(Table 5) reproduced the trends in field strengths suggested by
Camilloni et al. from QM calculations extremely well, across
both cis and trans substrate end points (Table 5, column 3),
across different substrate sequences (Table 5, rows 1−4), and
for cyclophilin B, a different member of the cyclophilin family
(Table 5, row 5). In addition, a large field drop was observed in
simulations of the R55A mutation in cyclophilin A. This arginine
residue, which is highly conserved across members of the cyclo-
philin family,168 was proposed to be the source of the majority of
the environmental field strength (and hence catalytic activity) in
the protein. This is consistent with the trends observed in our
simulations, and suggests that the complex electrostatic environ-
ment of an enzyme active site, and changes therein, can be
recreated well by AMOEBA. We continue with further work to
validate these observations across multiple enzymes with vastly
differing environmental field strengths and catalytic mechanisms.

Figure 7.Root-mean-square deviations from the room-temperature crystal structure for 3 proteins simulated in explicit water: (a) GB3 (2IGD), (b) hen
lysozyme (4LZT), and (c) cyclophilin A (4YUL).
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6. CONCLUSIONS
Classical force fields are systematically progressing beyond the
well-established but fundamentally limited fixed, atom-centered
monopole models. In particular they are starting to adopt more
sophisticated descriptions of permanent electrostatics and many-
body effects that can allow for a more accurate reproduction of a
much broader range of reference data and to make better predic-
tions. However, the greater accuracy introduced by improve-
ments in short-range forces that now include fixedmultipoles and
polarizability, and that are evolving to include charge transfer and
charge penetration or explicit quantummechanical treatments, is
revealing challenges in the software implementation on modern
hardware platforms that preclude their widespread adoption by
the computational chemistry community. We believe that the
results we have summarized on models, algorithms, and appli-
cation studies centered onmultipole-based polarizable potentials
such as AMOEBA have reached a landmark on usefulness to the

broader computational chemistry community. Now applica-
tion scientists have an expanded set of capabilities with regard
to advanced potential energy surfaces in a range of commu-
nity codes including Amber, Charmm, DL_POLY4, LibEFP,
ONETEP, OpenMM, Q-Chem, TINKER, and TINKER-HP.
While multipole-based polarizable force fields will never be as fast
as the simpler fixed partial charge biomolecular force fields, we
are now approaching an era in which AMOEBA and similar
models can be routinely used for applications that hitherto had
been intractable.
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