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Electrostatic interactions involving point multipoles are being increasingly implemented to achieve
higher accuracy in molecular simulations. A major drawback of multipolar electrostatics is the
increased computational cost. Here we develop and compare two Cartesian tree algorithms which
employ Taylor approximations and hierarchical clustering to speed up the evaluation of point multi-
pole interactions. We present results from applying the algorithms to compute the free space Coulomb
potential and forces of different sets of interacting point multipoles with different densities. The meth-
ods achieve high accuracy and speedup of more than an order of magnitude over direct sum calculations
and scale well in parallel. Published by AIP Publishing. https://doi.org/10.1063/1.4990552

. INTRODUCTION

It is self-evident that point charge electrostatic models
have been immensely useful in the study of the dynamical
and structural properties of condensed phase systems. How-
ever, the inability of the standard point charge models to cap-
ture the anisotropy inherent in electrostatic interactions limits
the models’ range of application.'® Point multipolar electro-
static models have been shown to provide better accuracy than
standard fixed point charge models®'® across a broad range
of simulations. However, at present, the computational cost
for simulating a system of point multipoles is significantly
higher than for fixed point charge models and that has natu-
rally limited the adoption of point-multipole models. As an
example, a particle-mesh Ewald (PME) method for multipolar
electrostatics up to hexadecapole-hexadecapole interactions,
developed by Sagui and co-workers,!” was found to be 8.5
times slower than the fixed point charge model. Prior to the
work of Sagui and co-workers, theoretical development of
Ewald sum based multipolar electrostatics had been limited to
interactions with multipolar order up to one'®!? and two?%-?!
primarily because of the cumbersome nature of the Carte-
sian representation and the lack of availability of computing
power. Sagui et al.'” and Simmonett et al.?> developed meth-
ods for computing the real space multipolar Ewald interactions
in Cartesian and spherical coordinates, respectively. Boateng
and Todorov?® generalized the work of Sagui et al.'” to other
interaction potentials and to both the real and reciprocal space
sums of PME. Lin?* has provided a more efficient recur-
rence method for computing multipolar interactions due to pair
potentials.

Several fast approximate methods have been developed
over the years for fixed-point charge interactions in classical
molecular simulations. These include smooth cutoff meth-
ods> and mesh-based methods such as particle mesh Ewald
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(PME)?® and the particle-particle particle mesh (P3M) meth-
ods,”’ which interpolate particle positions and charges on
a grid and employ fast Fourier transforms (FFTs) to eval-
uate the potential on the grid. An alternative mesh-based
method that usually avoids the use of FFTs is the multi-
level summation method*®? which interpolates particle posi-
tions and charges on a set of hierarchical nested meshes
and uses a multigrid method?*>? to evaluate the potential
on the nested meshes. In addition to the mesh-based meth-
ods, a different class of methods based on a hierarchical
tree clustering of particles has been developed for fixed-point
charge interactions. These include the fast multipole method,>
the cell multipole method,** and the Cartesian treecode
methods.?—38

Despite the tremendous amount of method development
for fast evaluation of fixed-point charge interactions in classi-
cal molecular simulations, there is a significant lack of similar
developments for classical multipolar electrostatic interac-
tions. Sagui, Pedersen, and Darden (SPD)!” developed a par-
ticle mesh Ewald method for multipolar electrostatics up to
hexadecapole-hexadecapole interactions. Recently a fast mul-
tipole method> for induced dipole-dipole interactions has also
been developed. This work develops Cartesian treecode meth-
ods to provide fast and accurate approximations for classical
permanent multipolar electrostatic interactions. The methods
are specifically suited for simulations with free-space bound-
ary conditions. Treecode methods are in spirit similar to fast
multipole methods.*3-***! As such, analogous fast multipole
methods can be developed for permanent Cartesian multi-
polar electrostatic interactions. For practitioners simulating
systems with periodic boundary conditions, the particle-mesh
Ewald method!”-23#2 is more suitable. Future work will focus
on extending the methods developed in this paper to peri-
odic boundary conditions to be compared to particle-mesh
Ewald.

The rest of this paper is organized as follows: Sec. II
introduces the formalism for multipolar interactions needed
for our derivations in Sec. III. In Sec. Il we explain the
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procedure for constructing the hierarchical tree and intro-
duce the particle-cluster and cluster-particle algorithms com-
pletely with pseudocode. In addition, we derive the expressions
needed for approximating several electrostatic quantities using
either particle-cluster or cluster-particle and provide other
details for the implementation of the two algorithms. Sec-
tion IV provides numerical results comparing the efficiency
of the two algorithms based on the error in approximating
point potentials and the CPU time for different user-specified
parameters for the two methods. We end the paper with the
summary and concluding remarks.

Il. FORMALISM FOR MULTIPOLAR INTERACTIONS

N

We define a multipolar operator, L;, as

L= (Cli +p; - Vi+Q;: ViVi+ 0:V, ViV,
+H; = ViV,VVi+ ), (1)

where ¢g;, p;, Q;, O;, and H; are the point charge, dipole,
quadrupole, octupole, and hexadecapole tensors, respectively,
of atom i, V; refers to the three-dimensional gradient with
respect to the position of atom i, and the “dot” products stand
for tensor contraction.

Additionally, we define a unidimensional vector of inde-
pendent multipole moments,

M = (q7px,py,172, Qxxa Qxy’ QXZ’ ny5 Qym QZZa

Oxxx,---’Hxxxx,Hxxxy,--->7 (2)

based on the original multipole vector M’ which has degen-
erate components for multipoles of order two or higher. M
is indexed by a triplet. As an example, M® refers to the
zero-order multipole (monopole), i.e., MO0 — q, M 100 refers
to the x-component of the dipole, i.e., py, and MP refers
to the hexadecapole component Hyy,,. In addition, individ-
ual components of M contain the sum of all original mul-
tipole components, M’, related by symmetry. For instance,
the octupole M!!! is the sum of the corresponding six degen-
erate components in the original multipole vector, M’. Thus
MM = 0+ Oy + 0. + Ol + Ol + Ol = 60,

By defining a unidimensional vector of independent (non-
degenerate) multipole moments, M;, for atom i, the corre-
sponding multipolar operator to an arbitrary order p can be
written in a more compact form as

p
L= ) Mia. 3)
[1s11=0

Here s = (s, 52,53) is the triplet that runs over all indepen-
dent multipoles, [|s|| = s1 + 52 + 53, M} = Mf‘szs3, and 9;
= 979,20y, is the multidimensional derivative with respect to
the position (x;, y;, z;) of atom i with orders s1, sp, and s3 in
the x, y, and z directions, respectively. For pair potentials, it is
often convenient to redefine the multipolar operator for atom j
in terms of the derivatives with respect to the position of atom
i to arrive at
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p
L= ), M3
[1s11=0
)4
= Z (_1)\ISIIM]$(91§
lIsl|=0

P—53 p—S3—52
Z Z (_1)s1+s2+S3 Mjé_‘lszss azsi,w 6;,2 5;[.1. (4)

0 52:0 S1 =0

M=

83

lll. TREE ALGORITHMS

A. Introduction

The treecode algorithm restructures a set of interacting
particles into a hierarchical octree. In the simplest case,® an
octree is formed by first considering the root of the tree as
the smallest rectangular box that encloses the particles. The
root is then divided into eight clusters, which forms the next
level of the tree. Then each of these eight clusters is divided
into eight. This process continues recursively on each branch
until the number of particles in a cluster is less than or equal
to a predetermined number, Ng. The last cluster at the end is
called a leaf. This procedure generates a hierarchical tree of
log N levels where N is the number of particles in the tree. An
example clustering in 2-D is shown in Fig. 1. In the figure, the
clustering stops when the number of particles in a leaf is less
than or equal to 3. The root (level 0) has 12 particles.

The hierarchical tree is used to separate particle-particle
interactions into near-field and far-field interactions by replac-
ing particle-particle interactions with ones involving particles
and clusters. Interactions between particles and clusters that
are deemed to be near-field are computed directly, while those
that are deemed to be far-field are approximated by a Tay-
lor approximation about the center of the cluster. For a set
of N interacting particles, the treecode reduces the O(N?)
cost to O(NlogN).3>384344 Cartesian treecode methods have
been developed for varied kernels including the charge-charge
real space Ewald sum,* power law potentials,?” multi-quadric
radial basis functions,*>*® Matérn kernel,47 and regularized
Biot-Savart kernel.** Boateng and Krasny® studied two dif-
ferent formulations of the Cartesian treecode which they called
particle-cluster and cluster-particle and identified the settings
for which each is preferred in a charge-charge system with
disjoint target and source particles. In the present work, we
develop particle-cluster and cluster-particle treecode algo-
rithms to speed up evaluations of multipolar electrostatic
interactions. The target and sources are the same. The tree
construction procedure outlined above is the same for both
methods developed in this paper. The particle-cluster algo-
rithm views the tree as a cluster of source particles, while the

RS Level 0

lﬁ E o

FIG. 1. A depiction of hierarchical tree clustering in 2-D. Here the root (level
0) is divided into four clusters which form level 1.
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C

FIG. 2. A particle-cluster interaction between a particle at x; and particles at
y; in cluster C. The cluster has center y. and radius r, and the particle-cluster
distance is R.

cluster-particle algorithm views the tree as a cluster of target
particles.

B. Particle-cluster treecode

In a system of interacting particles, let x; be the position of
particle i with multipolar vector M; and multipolar operator L;
interacting via a pair potential with a cluster, C, of M particles
with multipolar vectors and multipolaAr operators M; and L,
respectively, at position Y {yj, M, Lj,j = 1 : M}, shown
schematically in Fig. 2. Cluster C has radius r, center y,., and
the distance from the x; to y, is R. Let ¢ be the pair potential
kernel, then for a pth order multipole, the potential at x; due
to the particles in cluster C is exactly given as

Vic = ZL $xiy) = > Ligxi,y)

y;jeC

and the potential energy due to the interaction between particle
i and cluster C is exactly evaluated as

)4 P
Uic = ZL jOxiY)= D, DL D MIMOPGe(xi,y)).

¥;€C1=01Is[[=0
(6)

Particle i and cluster C are well separated if % < 9354
where 0 < 6 < 1. This is called the multipole accep-
tance criterion (MAC).3>* We now derive the formulae for
the Taylor approximations of (1) the potential at position X;
due to a cluster of particles, C, (2) the potential energy due
to the interaction between particle i and cluster C, and (3)
the force on particle i due to cluster C. Formulae for the
electric field and torque are derived in Subsection 1 of the
Appendix.

|

[k]1=0 |

P

=
T
o

n||=0

{
= Z z,,: (=1l Zp: by " (Xi, Y ) HE (O).

(_1)||ll\|M
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1. Approximation of the potential

If the particle and cluster are well separated, then the exact
potential given in Eq. (5) is approximated by an {th order
Taylor expansion abouty =y,

P
D, D, MFexiy)

yjeC |Is|]=0
l 1 p
~ Z Z F Z M p(xi, o) | (y; = ¥)K
yJ-EC||k||:() |Is||=0
(7a)
4 p 1
= D D, Aoy ) My —yok (Th)
11k[1=0 |Is[I=0 y,eC
t P
= D B YOH(O). (7c)
11k[1=0 |[s[I=0

In Egs. (7a) and (7b), ||Kk|| = ki + ky + k3, k! = ki ko k3!, 6;‘*5
= OO and (v = ¥k = Oy = e O — ve)®
(js = ¥&;)©. In Eq. (7¢), we define the kth Taylor coefficient
of the sth order multipole kernel,

(oY) = 15 a;‘a;as(x,»,yc) = k,a;‘“«p(x,-,m, ®)
and an sth order cluster moment,
Hy(C)= )" Mi(y; -y, )

y;eC

to give the ¢th order Taylor approximation for the potential
due to the particle-cluster interaction. The cluster moments
depend exclusively on the particles in the cluster and as
such can be stored and reused without having to recompute
them.

2. Approximation of the energy

By using the definitions in Eqgs. (3), (5), and (7b) and
observing that for a pair potential kernel ¢(x;.y;), 9/'¢
= (—1)”“”6}.“(15 = 0y'¢, we can approximate the energy due
to a well-separated particle-cluster interaction to {th order
as

I3 )4
M YD Loy Y My, - vk

|s||=0

y;€C

p
D ki Gk, YD) D MGy -y

1isT1=0 y,eC

(10)
lIs11=0



164104-4 H. A. Boateng

3. Approximation of the force

The force on i due to the particles in cluster C, f; ¢
= —Vy,U;c = VyU, c, is approximated as

s P p
ficx D, >, MM 3wy (i) HyC) A
[k[[=0 [n||=0 lIsl1=0
bS+Il+61
¢

» P
Z (_l)llnII/\/lg1 Z bf:“”z H(O), (12)

[k[[=0 [In]{=0 [Is[1=0

+Nn+e3
by
k

where e; = (1,0,0), e2 =(0,1,0), and e3 = (0,0, 1).

4. The particle-cluster algorithm

The pseudo-code for particle-cluster®>-3# is given in Algo-

rithm 1. The algorithm requires the user to specify the order
of Taylor approximation, ¢, the MAC, 6, and the maximum
number of particles in a leaf, Ny. After the tree is built, the
algorithm proceeds with a loop over all particles, x;, where
each particle interacts with the root of the tree via a call to
the subroutine compute-pc in line 5 of the algorithm. Each
particle-root interaction fails and the algorithm descends to
the next level of the tree, i.e., the children of the current clus-
ter. Here the MAC is tested again for each potential interaction
between the particle and the clusters on this level of the tree.
If the MAC is satisfied, the algorithm performs two tasks as
follows:

1. It computes and stores the moments, Eq. (9), of the clus-
ters, if the moments are not already available, to be used
for interactions with other particles.

2. The interaction between the particle and the cluster
is approximated by the Taylor series polynomial in
Eq. (7¢).

If the MAC is again not satisfied, the algorithm descends to
the next level. This procedure will continue until the algorithm
reaches a leaf at which point the interaction between particle
i and the leaf is evaluated by direct summation if the MAC is
not satisfied.

Algorithm 1. Particle-cluster treecode.

1 program pc-treecode
2 input: N particles x;, multipoles M, parameters p, 6, N
3 output: potential, electric field, energies, forces, torques

4 Set {y; };\;1 = {x; }jA;I; construct tree of source particles 7

5 fori=1: N; compute-pc(x;, root); end

6 end program

7 subroutine compute-pc (x, C)

8 if MAC is satisfied

9 compute and store moments of C (if not already available)

10 compute particle-cluster interaction by Taylor approximation
11 elseif Cis aleaf
12 compute particle-cluster interaction by direct summation

13 else for each child of C
14 compute-pc(x, child)
15 end subroutine

J. Chem. Phys. 147, 164104 (2017)

The treecode achieves speedup in two ways: (1) The exact
particle-cluster interactions are replaced by a Taylor approxi-
mation that typically involves fewer arithmetic. (2) Once the
moments of a cluster is computed, it is stored and used in inter-
actions of the cluster with every other well separated particle
without recomputing.

C. Cluster-particle treecode

While the particle-cluster algorithm looks at the effect of
a cluster of source particles on a target particle, the cluster-
particle algorithm focuses on the effect of a source particle on
a cluster of target particles. Consider a cluster, C, of particles
at position x;, {x;, M;, i,i}, interacting with M particles outside
the cluster at position y; with multipolar vectors and operators
M; and L {yj,./\/lj,I:j,j =1:
in Fig. 3.

The cluster has center X,., radius r, and the distance from
the center to y; is R. The cluster-particle interaction is well
separated if 1% < @for0 < 0 < 1.Inthis case, the interaction of
particles j with all the particles in cluster C is approximated by
a Taylor polynomial of order £ about the center of cluster C. We
now derive, for the cluster-particle algorithm, the formulae for
the approximations of (1) the potential at position X; in cluster
C due to M source particles at position y;, (2) the potential
energy due to the interactions between particle i in cluster C
and M source particles at position Yjs and (3) the force on
particle i in cluster C due to M source particles at position
y;. Formulae for the electric field and torque are derived in
Subsection 2 of the Appendix.

M}, respectively, as depicted

1. Approximation of the potential

The exact potential at position X; in cluster C due to the
source particles at y; is

M M p
Vic =Y Ligtxiy) = > MiFexiy).  (13)

Jj=1 J=1 1Is||=0

In the case of a well-separated cluster-particle interaction, this
potential is approximated by a Taylor expansion of the kernel
about X = X, to obtain

> ) Moy

J=1 1Is||=0
M 14 1
SDIPDINL Z M3 o(xe, y)) | (xi = %)
J=111k[]=0 [Is]1=0
(14a)
®*X; K ’
° ’ /7‘
FC AR -
X R Y
: i

FIG. 3. A cluster-particle interaction between particles at X; in cluster C and a
source particle y;. The cluster has center X and radius r, and the cluster-particle
distance is R.
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C 2 Mok
=> > Z%M;a;‘%(xc,yj)(xi—x»“
11k]1=0 [Is[|=0 j=1 '
(14b)
l
= Z m, o(x; = X)X, (14c)
11k]1=0

Equation (14c) is a power series of degree £ in powers of
(x; — x.) with coefficients

(Dwnﬂ M .
My = DT M (x, y))
[Is|[=0 j=1
M p
=DM MR (e, y)). (15)
=1 1Isl1=0

2. Approximation of the energy

Similarly, the potential energy due to the cluster-particle
interaction is evaluated exactly as

Ui =

5

bﬁ

LiLp(xi.y))
1

~.
I

)4 )4
DT MEMIaRSsxiy). (16)

[In]|=0 |Is]|=0

b”ﬂ:

1l
—_

J

By using the definitions in Egs. (3), (13), and (14b) and
observing that for a pair potential kernel ¢(x;,y;), 9!'¢
= (—1)”“”6/.“415 = 0y'¢, we can approximate the energy due
to a well-separated particle-cluster interaction to €th order
as

Q

<
=

ot}
=

P Mo 1ylikll
uZZZ%

[In]|=0 [Ik]1=0 |Is||=0 j=1

X MEO p(xe, y)) (X = X)X

4
_ Zpl( 1)HnIIMn( 1)IIkII
[Ik[]=0 |In||=0
p M

X DD M, y ) (xi = Xt

[Is[1=0 j=1

14 14

= > D0 DM e - xok. (17)
[k]=0 [In||=0

3. Approximation of the force

The force on particle i in cluster C due to source particles

jistic = —Vy, Ui c, which is approximated as
¢ P
fic~ - D EDIAMImEEV (xi - x)* (18)

[k[[=0 [In]{=0
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ki (x; — x. )k
ka(x; — xc)k2 |,
k3 (x; — X )k3

19)

Z[: i (_l)llﬂHMn mi+g

[k]|=0 \[In]|=0

where e; = (1,0,0), e; = (0, 1,0), and e3 = (0,0, 1).

4. The cluster-particle algorithm

The algorithm requires the user to specify the order of
Taylor approximation, ¢, the MAC, 6, and the maximum num-
ber of particles in a leaf, N. The tree of target particles is then
constructed. Assume that the tree has L levels, then the root
with all the particles can be labeled as level 1 and the deepest
level containing leavesislevel L. A clusteratlevel [, 1 <1 < L,
is labeled as C; where the subscript refers to the level of the
tree at which the cluster is located. Clearly, all the particles x;
belong to the root cluster, C|, which is the only cluster on level
1. In addition, each particle belongs to a nested sequence of
clusters, x; € Cy, C - -+ C C;. The effect of a source particle Y
on the targets in a cluster is computed by Eq. (14c¢) if the clus-
ter and the source particle are well separated and by Eq. (13)
otherwise, if the cluster is a leaf. The power series coefficient
in Eq. (15) contains the effect of all well-separated sources on
the cluster. The pseudo-code for cluster-particle’®4° is given
in Algorithm 2. The cluster-particle algorithm has two stages
after the tree is constructed.

In stage 1, the code loops through the N source particles
and interacts each source particle y; with the tree through a
call to the subroutine compute-cpl in line 5. The interaction
with the root does not satisfy the MAC; as such, the algorithm
descends to the next level. If a target cluster and the source
particle are well-separated, then the power series coefficients
ms c in Eq. (15) are updated. Otherwise the algorithm descends
to the children of the cluster and calls itself recursively. When

Algorithm 2. Cluster-particle treecode.

1 program cp-treecode
2 input: N particles x;, multipoles M, parameters p, 6, N
3 output: potential, electric field, energies, forces, torques
4 Set {y; }J.Ail = {x; }jA;] ; construct tree of target particles X;
5 forj =1, N; compute-cpl(root, ¥); end
6 compute-cp2(root)
7 end program
8 subroutine compute-cp1(C, y)
9 if MAC is satisfied
10 update power series coefficients m ¢ by Eq. (15)
11 elseif Cis aleaf
12 use Eq. (13) to compute interactions directly
13 else for each child of C
14 compute-cpl(child,y)
15 end subroutine
16 subroutine compute-cp2(C)
17  if C interacted with a source particle by Taylor approximation in stage 1
18 loop through target sites x; in C
19 approximate interactions using power series in Eq. (14c)
20  for each child of C
21 compute-cp2(child)
22 end subroutine
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a leaf Cy, is reached and the MAC is not satisfied, then the
interaction is computed by direct summation for all target sites
x; € Cr using Eq. (13).

In stage 2, the algorithm calls the subroutine compute-
cp2 in line 6. The subroutine descends the tree, checks to see
if a cluster interacted with a well-separated source in stage 1,
and if true, evaluates Eq. (14c) for all particles in the cluster.
The algorithm is complete after stage 2.

5. Recurrence relation

The moments in Eq. (9) for the particle-cluster algorithm
require multi-dimensional derivatives of the kernel. Similarly,
for the cluster-particle algorithm, the coefficients in Eq. (15)
require multi-dimensional derivatives of the kernel. In previous
work,?? we derived a recurrence relation for multi-dimensional
derivatives of the power-law kernel, ¢(x,y) = ﬁ In
this work, we consider the Coulomb pair potential for which
v=1.Definex = (x1,x2,x3),¥ = {(¥1,2,Y3), and the kth multi-
dimensional derivative of ¢(Xx,y) = |X+y‘ as B;Wp(x, y) = (9;‘¢.
Then the recurrence relation for the kth multi-dimensional
derivative is given as

3
1 1 .
o= 2——) ki(xi = yi)ay ™
vé |x—y|{( i) 240 =030

1 : k—2e;
1) D kitki — DA g 20
+(||k|| ),-_1 ( )0y ¢} (20)

where e¢; = (1,0,0), e; = (0,1,0), and e3 = (0,0, 1). The
function value, k = 0, is computed explicitly and used as the
starting value for the recurrence to compute the | k|| > 1 terms.
In the recurrence, the derivatives for ||k|| < O are set to zero.
For the particle-cluster algorithm, ¢(X,y) = ¢(X;,y,), and for
cluster-particle, ¢(x,y) = ¢(X, y;).

6. Implementation details

The algorithms were written in Fortran 90 and the codes
are available online*®*° under the GNU General Public
License. The tests were performed on a Dell PowerEdge R730
Linux box with two 2.3 GHz Intel Xeon processors each with
36 threads and 32 GB memory. The code was compiled with
a GNU Fortran compiler and used the -O3 optimization.

IV. NUMERICAL RESULTS

In this section, we present results from applying the two
algorithms to evaluate the free space multipolar Coulomb
potential force at N sites due to the interaction between
the particles for N € {10%,10%,10°}. The particles are ran-
domly distributed in the unit cube [-0.5, 0.5]%, and the mul-
tipoles were generated randomly from the interval (-1, 1). In
Secs. IV A-IV C, the results are for tests where only the poten-
tial was computed. The tests in Sec. IV D evaluated both the
potential and the force.

A. Efficiency of the treecode methods—Accuracy
and CPU time

To study the efficiency of our two methods, we used
point multipoles up to quadrupoles (p = 2) and hexadecapoles

J. Chem. Phys. 147, 164104 (2017)

(p =4), in Eq. (5) or (13). The algorithms used the following
parameter set for the tree: 6 € {0.5,0.75,0.9} as the accep-
tance criterion for approximating an interaction with a Taylor
approximation, £ € {0,2,4,6,8,10, 12} for the order of the
approximation, and Ny = 500 as the maximum number of par-
ticles in a leaf during construction of the tree. The potential at a
target site due to a well-separated interaction is approximated
by Eq. (7c) in particle-cluster and by Eq. (14c) in cluster-
particle. The root mean square error, E, of the approximation is
evaluated as

1/2
2

N
v - Vix)
E=|L , @21

N
D ve?
i=1

where V(x;) is the exact potential at x; defined in Eq. (5) or
Eq. (13) and V(x;) is the approximation.

Figures 4 and 5 show the accuracy and timing results
for the serial implementation of both algorithms for multi-
polar orders p = 4 and p = 2, respectively. The top rows
of both Figs. 4 and 5 show the root mean square error, E,
for both algorithms for different orders of Taylor approxi-
mation, ¢ € {0,2,4,6,8,10,12}, and different system sizes,
N € {104, 10°, 106}. In the plots in the top row, the order of
approximation increases downwards. Both algorithms achieve
extremely good accuracy for all orders, MACs, and system
sizes. As expected, the error decreases with increasing order
of the approximation. One quirk of our results is that for all
orders, the error decreases with increasing system size. This
is because we used the same parameter, No = 500, for all sys-
tem sizes. A larger system size, with a fixed Ny, means a
deeper tree with more levels and leaves. This leads to more
direct summation and hence an increase in accuracy. We
also see that for all orders, the tests with the smallest MAC,
6 = 0.5, has the least error and the tests with the largest MAC,
6 = 0.9, shows the largest error. A small MAC means fewer
interactions between particles and cluster satisfy the multi-
pole acceptability criterion and thus more interactions between
particles and clusters are computed exactly. This explains
the higher accuracy for 8 = 0.5. The trade-off is more CPU
time.

The bottom rows of Figs. 4 and 5 are a plot of the CPU
times, in seconds, it took for the particle-cluster and cluster-
particle methods to generate the corresponding result in the
top row. Also included is the CPU time for an efficient direct
sum computation. In these plots, the Taylor approximation
increases from bottom to top. For both algorithms, the CPU
time increases with increasing order of approximation. In addi-
tion, for each MAC, we see excellent speedup in CPU time
for the treecode algorithms over the direct method as the sys-
tem size gets larger. A larger MAC results in faster compute
time but lower accuracy. Table I provides further evidence
of the efficiency of the tree algorithms over direct summa-
tion. Table I(a) is the direct sum CPU time for computing the
potential for N € {10%, 103, 10°} point-multipoles with mul-
tipole order p = 4. Tables I(b) and I(c) are the corresponding
CPU times for particle-cluster and cluster-particle for Tay-
lor approximation order £ € {0,4,8} and MAC parameter,
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CPU time (s)

- direct sum
—o—particle-cluster

—A--cluster-particle

FIG. 4. Comparison of the treecode methods to direct
summation. Top row: Error (E), bottom row: CPU time
(s). Order of multipole, p = 4. N € {10%,10°,10°}, 6 €
{0.5,0.75,0.9}, Ng =500,and £ = 0 : 2 : 12.

10* 10° 10° 10* 10° 10° 10* 10° 10°
N (particles) N (particles) N (particles)
10 0=05 102 =075 0=09

i

l
10710 108 10° FIG. 5. Comparison of the treecode methods to direct
10* 10° 10 10* 10° 106 10 10° 108 . .
summation. Top row: Error (E), bottom row: CPU time
10° (s). Order of multipole, p=2. N € {104, 105, 100 1,0 €
y {0.5,0.75,0.9}, Ng =500,and £ = 0 : 2 : 12.
. 10° /
L pTE A
2 107 / T
S 10"l : 14
o
O 40 irect sum
—o—particle-cluster
107" - cluster-particle
10* 10° 10° 10 10° 108 10* 10° 108
N (particles) N (particles) N (particles)

6 = 0.75. The treecode algorithms are faster than direct sum
with errors between 10~'% and 107 For example, for N = 103
when the order of approximation £ = 4, the error for both
particle-cluster and cluster-particle is less than 107 and the
CPU time of 28.127 s and 22.065 s, respectively, is more than
ten times faster than the CPU time of direct sum which is
382.021 s. For N = 10, the zero order approximation for both
algorithms when p = 4 has an error which is less than 10710
and the CPU times are more than three hundred times faster
than the CPU time of direct summation.

The top rows of Figs. 4 and 5 show that the errors pro-
duced by both algorithms are lower for multipolar order p
= 4 compared to the error when p = 2 for the same order
of approximation. This is expected. The treecodes approxi-
mate the far-field interactions between particles and clusters.
The Coulomb potential decays faster for p = 4 compared to p
= 2. As a result, the effect of far-field interactions is smaller
for p =4 than for p = 2 and correspondingly the error produced
from the Taylor approximation is smaller for p = 4 compared

to that for p = 2. Higher Taylor approximation orders, £ > 12,
are required to achieve higher accuracy for lower multipo-
lar orders. Table II shows results for p=2 with N =106,

TABLE 1. CPU time (s) for N particles, N € {10%, 10°, 10°}, with multipole
order p =4, and Taylor approximation order £ € {0,4, 8}. (a) Direct sum, [(b)
and (c)] treecodes with MAC parameter 6 = 0.75.

¢  (a)Directsum  (b) Particle-cluster  (c) Cluster-particle

0 0.590 0.399
N=10* 4 3.822 1.444 1.063
8 3.600 2.811
0 10.282 7.351
N=105 4 382.021 28.127 22.065
8 76.251 61.403
0 148.896 112.880
N=10° 4 46926.447 436.724 361.465
8 1221.899 1014.569
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TABLE II. Error (E) and CPU time (s) for N = 100 particles, No = 500, 8 = 0.75, with multipole order p = 2,
and Taylor approximation order £ € {12, 16,20, 24}. (a) Direct sum, [(b) and (c)] treecodes with MAC parameter
0 =0.75.

J. Chem. Phys. 147, 164104 (2017)

(b) Particle-cluster (c) Cluster-particle
4 (a) Direct sum Error (E) CPU time (s) Error (E) CPU time (s)
12 1.82x1077 1633.852 1.83x 1077 1380.015
16 5.10x 1078 3065.121 5.06x 1078 2515.155
8777.380 g 5
20 1.48x 10 5584.925 1.49x 10 4206.313
22 432x107° 10043.635 450%x107° 6656.17

TABLE III. Error (E) and CPU time (s) for N = 107 particles, No = 500, 6 = 0.75, with multipole order p = 2,
and Taylor approximation order ¢ € {12, 16,20,24}. (a) Parallel direct sum, [(b) and (c)] parallel treecodes with
MAC parameter 6 = 0.75. All three methods were run over 32 processors.

(b) Particle-cluster

(c) Cluster-particle

4 (a) Direct sum Error (E) CPU time (s) Error (E) CPU time (s)
0 L11x107 58.667 1.71%1073 57.231
—6 —6
4 83 345,388 231 x 10_7 203.686 231 x 10_7 183.638
8 5.52% 10 690.703 5.52x10 473.586
12 1.46x 1077 1689.673 1.46 x 1077 1006.529
16 4.06x1078 3270.021 4.05%x1078 1899.527
20 1.17x1078 5685.749 1.17x 1078 3169.747

No=500,0=0.75,and € € {12, 16, 20, 24}. We see an increase
in accuracy over the 8 =0.75 results in Fig. 5 with the increase
in the order of approximation. Although there is a correspond-
ing increase in CPU time, both algorithms produce errors of
about 1078 in half the time required for direct summation and
are thus efficient replacements for direct summation.

The efficiency of treecode algorithms increases with
increasing system size. Table III shows results for parallel
versions of direct sum and the two algorithms over 32 pro-
cessors with p = 2 with N = 107, Ng = 500, 6 = 0.75, and
¢ €{0,4,8,12,16,20}. We see an increase in the efficiency of
the treecode algorithms for N = 107 compared to N = 10° in
Table II. Both algorithms produce errors similar to the errors
for N = 10° but are more than an order of magnitude faster
than the direct sum.

Section IV C provides more details and results on the
parallelization of the two algorithms.

1. Parameter space of the treecode algorithms

To study the parameter space of the treecode algorithms,
we plotted the CPU times for different approximation orders
against the corresponding errors for different MAC param-
eters, 8 € {0.5,0.75,0.9}. Figure 6 is one such plot with
No =500 and N € {10*, 10°,10°}. In these plots, the approx-
imation order ¢ increases from bottom to top. The plots show
that for a fixed system size, N, and a fixed order of approx-
imation, ¢, the accuracy of both algorithms increases with
decreasing MAC parameter, 6. The usefulness of the plot is
that it is a guide to select a set of parameters to efficiently
achieve a desired accuracy level. For example, for N = 106,
the plot shows that an error of 1072 can be achieved with two
different parameter sets as follows:

1. A parameter set of No =500, 6 =0.75, and £ = 12.
2. A parameter set of No =500, 6 =0.5, and £ = 0.

N=10* particles

N=10° particles

N=10° particles

2 3 5
10 I I 10 I I I 10 —&—particle-cluster: §=0.9
—&-particle-cluster: 6=0.75
—k—particle-cluster: §=0.5
—#—cluster-particle: =0.9
—A—cluster-particle: #=0.75
10 —<—cluster-particle: =0.5
10" 4 10°F 1
w
2 5 FIG. 6. A plot of CPU time against error forp =4, N €
= 10 ¢ {10%,10%,10°}, & € {0.5,0.75,0.9}, No = 500, and ¢
5 =0:2:12.
100F 4 10" E
10?
10—‘! 1 1 1 100 1 1 1 1 101 1 1
107 108 10 1072 10 10® 10° 107 1072 10710
error, E error, E error, E
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. N=10° particles
10 E f 1 [-=—particle-cluster: (N, = 250, 9=0.9)
r 1| particle-cluster: (No =250, 6=0.75)
r 7 |-k particle-cluster: (No =250, 6=0.5)
cluster-particle: (No =250, 6=0.9)
104 cluster-particle: (N0 =250, 6=0.75)

T

T

cluster-particle: (NO =250, §=0.5)
—3 particle-cluster: (NO =500, 6=0.9)

]
@ L }‘] | |- particle-cluster: (NO =500, §=0.75)
-g 103 | t | —x particle-cluster: (NO =500, §=0.5)
S E [E 3 |~ cluster-particle: (NO =500, 6=0.9)
[ 1 particle: (N. = 500, 6=
o r [E 1 —/A cluster-particle: (NO 500, 6=0.75)

—x Cluster-particle: (NO =500, §=0.5)
particle-cluster: (NO =1000, #=0.9)

J. Chem. Phys. 147, 164104 (2017)

FIG. 7. A plot of CPU time against error for p = 4, N
=10%, 0 € {0.5,0.75,0.9}, Ny € {250,500, 1000}, and
€=0:2:12.

T 102 E 4 = particle-cluster: (Nc =1000, §=0.75)
C ] particle-cluster: (NO =1000, 6=0.5)
V4 [ 1 |- % cluster-particte: (N, = 1000, 6=0.9)
[ 1 |- cluster-particie: (N = 1000, 6=0.75)
; ‘ | .- Cluster-particle: (NO =1000, 6=0.5)
10 10714 10712 10710 108
error, E

The more efficient choice of parameters is set 2 (6,¢)
= (0.5,0) which gives an accuracy better than 1072 with
CPU time about an order of magnitude faster than parameter
set 1.

Figures 7 and 8 show the result for p =4 and p =2, respec-
tively, with fixed N = 10® and different Ny € {250, 500, 1000}.
In these plots, the approximation order, ¢, increases from bot-
tom to top as well. The plots show that in general for both
algorithms, No = 500 produces the best accuracy for all MAC
parameters, 6 € {0.5,0.75,0.9}, when N = 10° and Ny = 250
is the least accurate choice. The efficiency of Ny = 1000 lies
between that of No = 250 and Ny = 1000. The effect of Ny is
not as systematic as that of 6 or £. For each simulation system,
a near optimal Ny is chosen by performing a few tests with
different No’s and producing a plot similar to Figs. 7 and 8.

B. Comparison of CPU times for different
multipole orders

Figures 4-8 and Table I show that although particle-cluster
and cluster-particle have very similar behavior, cluster-particle

N=10° particles

is in general faster for multipolar order p = 4. Boateng and
Krasny>® have shown that for a system of N point charges, p
=0, particle-cluster is faster than cluster-particle. However, for
point multipoles, p > 1, the formulations of the two algorithms
in Egs. (7c) and (14c) make cluster-particle the faster algo-
rithm. For particle-cluster, the approximation of the potential
at position x; by Eq. (7¢) has an explicit double sum over ||K||
and ||s||. This is because each Taylor coefficient, bls( defined in
Eq. (8), is unique to a target position, x;, and depends on x;. To
evaluate Eq. (7c) for each target site requires repeated memory
access of the multi-dimensional array that stores the Taylor
coefficient bi(xi,yc) for each k value of the outer sum. For
cluster-particle, Eq. (14c) is just a single sum. This is because
the coefficients, mf( ¢ defined in Eq. (15), depend only on the
center of the clusters and not on the target sites inside the
cluster. As a result, the sum over ||s|| to form m|s<,c is com-
pleted before evaluating Eq. (14c). This reduces the memory
access requirements of cluster-particle and makes it faster than
particle-cluster for p > 1. Figure 9 is a plot of the CPU time
of particle-cluster against the CPU time of cluster-particle for
different multipolar orders, p € {0, 1,2,4}. The plots are for

10*

CPU time (s)
aw

o
N

& particle-cluster: (Nn =250, #=0.9)
o particle-cluster: (N0 =250, #=0.75)
—¥— particle-cluster: (N, = 250, 6=0.5)
cluster-particle: (ND =250, #=0.9)
cluster-particle: (N0 =250, #=0.75)
cluster-particle: (NO =250, #=0.5)
_3 Pparticle-cluster: (N° =500, #=0.9)
— particle-cluster: (N0 =500, #=0.75)
—- Pparticle-cluster: (N0 =500, #=0.5)
—#- cluster-particle: (N, = 500, 6=0.9)
—/\ cluster-particle: (N0 =500, #=0.75)
—x cluster-particle: (No =500, #=0.5)
particle-cluster: (No =1000, 0=0.9)
particle-cluster: (N0 =1000, #=0.75)
particle-cluster: (N0 =1000, =0.5)
% Cluster-particle: (NU =1000, #=0.9)
A\ cluster-particle: (No =1000, §=0.75)
x.-. cluster-particle: (N0 =1000, #=0.5)

10°®

error, E

FIG. 8. A plot of CPU time against error for p =2, N
=10%, 6 € {0.5,0.75,0.9}, Ny € {250,500, 1000}, and
€=0:2:12.
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FIG. 9. A plot of particle-cluster CPU time against
cluster-particle CPU time for multipolar orders p € {0, 1,
2,4}. Tree parameters: 6 =0.75,N € {104, 105, 100 },No
=500,=0:2:12.
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—*— Particle-cluster: £ =0
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FIG. 10. Parallel scaling of the treecodes; p=4,6 =0.75,
N € {10%,10%,10°}, and ¢ € {0,4,8}.

1 2 4 8 16 32 1
number of processors

2 4 8 16 32 1
number of processors

systems sizes N € {10%,10%,10°}, MAC parameter 6 = 0.75,
No=500,and £ =0:2:12. Also plotted is the line y = x.

As expected, particle-cluster is slightly faster than cluster-
particle for all orders of approximation for the zero order
multipole since the plots for p = 0 is below the line y = x.
But for p > 1, the lines are all above the y = x line which
shows that cluster-particle is faster for multipole orders of one
or larger.

C. Parallelisation

This section presents results on the parallelisation of the
treecode algorithms on a modest number of processors. There
are several approaches to parallelising the treecode.’’>% A
replicated data approach was employed for the parallelisation
in this work with the message passing interface (MPI). Each
processor of the cluster had a copy of the particles and built
a copy of the tree. Load balancing was achieved by splitting
the targets, in the case of particle-cluster, and the sources, in
the case of cluster-particle, over the processors in line 5 of
Algorithms 1 and 2, respectively. A global sum of potentials
was performed at the end for each algorithm. Figure 10 is a
plot of CPU time versus number of processors P = 2/, j: 0:
1: 5, for both algorithms for system sizes N € {10%,10°, 10°}
with multipolar order p = 4. The MAC parameter 8 = 0.75,
No = 500, and approximation orders £ € {0,4,8}. The fig-
ure shows that both algorithms, for all approximation orders,
achieve good parallel speedup for small system size as well
as large system size. Table IV provides numerical evidence of

2 4 8 16 32
number of processors

the parallel speedup of both algorithms. The compute time on
different processor counts is given for both algorithms for N
= 10° and the order of approximation £ = 8. We compute the

parallel speedup

o (22)

tp
where ¢; is the CPU time on a single processor and 7p is the
CPU time on P processors.

The table shows that cluster-particle has better scaling
over the 32 processors for the parameter regime studied. We
ascribe the difference in parallel speedup of the two algorithms
to the difference in formulations of Eqgs. (7¢) and (14c) and
effects as explained in Sec. IV B. In future work, we will study
the parallel versions of the algorithms in detail.

TABLE IV. CPU time (s) and speedup (o) for N = 10° particles, on P = 2,
Jj: 0: 1: 5 processors, with multipole order p = 4, Taylor approximation order
¢ =8, and MAC parameter 6 = 0.75.

Particle-cluster Cluster-particle

P (number of processors) tp o tp o

1 1224.077 1 986.881 1

2 635.232 1.93 502.856 1.96
4 325.573 3.76 251.329 3.93
8 202.831 6.03 137.571 7.17
16 151.196 8.10 87.459 11.28
32 110.870 11.04 51.431 19.19
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FIG. 11. Errors in potential and force. Top row: Errors
in potential (E,). Bottom row: Errors in force (Ef).
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D. Mixed multipolar rank (orders)

In this section, we look at the performance of the algo-
rithms in a regime where the point-multipoles have different
orders p € {0, 1,2}. In the test cases presented here, the algo-
rithms compute both the potential and the force using the
relevant formulae in Egs. (7¢), (12), (14c), and (19). The root
mean square error, E,, of the approximation of the potential is
evaluated as

N 1/2
> v - Vo

i=1

E, = N ,
D IvepP?
i=1

where V(x;) is the exact potential at x; and V(x,-) is the approxi-
mation. In addition, the root mean square error, Ey, in the force
approximation is computed as

(23)

1/2
2

N
St
i=1

E=|2—— |

(24)

where f; is the exact force on particle i and f'i is the
approximation.

1. Full rank test case

In order to have a base for comparison, we first present
results for a test case where all the point-multipoles have order
2,1i.e., p = 2. Figure 11 shows the root mean square errors in
the potential and force for N € {10%,10°,10°} with order of
approximation ¢ € {0,2,4,6,8, 10,12}, Ng = 500, and MAC
parameters 6 € {0.5,0.75,0.9}.

The errors in the potential shown in the top row of Fig. 11
are the same as the errors shown in the top row of Fig. 5.
The errors in the force are much smaller than the order in
the potential. This is as expected since for multipolar order

p = 2, the kernel for the force decays as rié while the error

in the potential decays as rl} This makes the algorithms very
suitable for molecular dynamics simulations where the forces
are required. We expect the approximations of the potential
energy and torques to have errors on the order of the force
errors. Figure 12 shows a comparison of the CPU times for the
two algorithms to that for direct summation. The speedup of
the two algorithms over direct summation is more pronounced
when the force is computed compared to the bottom row
results in the test case shown in Fig. 5 which includes only a

CPU time (s) to compute forces and potentials

FIG. 12. Comparison of the CPU times (s) of the
treecode methods to direct summation. Order of multi-
pole,p=2.N € {10%,10°,10°}, 6 € {0.5,0.75,0.9}, N
=500,and £ =0:2:12.

*-direct sum
10k —e—particle-cluster| 101 L 1 10k
) —&--cluster-particle . ) , . . .
10* 10° 108 10* 10° 108 10* 10° 108
N (particles) N (particles) N (particles)
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TABLE V. CPU time (s) for N particles, N € {10%, 10, 10°}, with multipole
order p =2, and Taylor approximation order ¢ € {0, 4, 8}. (a) Direct sum, [(b)
and (c)] treecodes with MAC parameter 6 = 0.75.

J. Chem. Phys. 147, 164104 (2017)

TABLE VII. CPU time (s) for N particles, N € {10%,10°,10°}, with mixed
multipole order p € {0, 1,2}, and Taylor approximation order ¢ € {0,4,8}.
(a) Direct sum, [(b) and (c)] treecodes with MAC parameter 6 = 0.75.

¢  (a)Directsum  (b) Particle-cluster  (c) Cluster-particle

¢  (a)Directsum  (b) Particle-cluster ~ (c) Cluster-particle

0 1.099 1.182 0 0.558 0.592
N=10* 4 6.459 2.610 2213 N=10* 4 2.600 1.666 1.389
8 7.176 5.272 8 4.910 3.413
0 18.185 19.764 0 9.773 10.388
N=10" 4 640.332 54.185 44.697 N=10° 4 270.293 34.142 28.016
8 165.247 112.706 8 111.457 74.461
0 282.986 295.263 0 159.296 157.076
N=10° 4 66001.855 878.905 718.255 N=10° 4 27470.762 559.882 449.681
8 2673.246 1828.692 8 1876.735 1229.321

TABLE VI. Distribution of maximum multipolar order for N particles, N €
{10%,10°, 10%}.

Charges (p =0) Dipoles (p = 1) Quadrupoles (p =2)
N=10* 3430 3284 3286
N =10 33289 33380 33331
N =10° 332946 333424 333630

computation of the potential. Table V provides numerical
results for the comparisons of CPU times.

For N = 10° particles and ¢ = 8, both algorithms have
an error of 10710, In this regime, particle-cluster is 24 times
faster than direct sum, while cluster-particle is 36 times faster.
Because of the fast decay of the force kernel, the zero order
approximation for N = 10° has an error in the force of 107'° for
both algorithms as well, with a speedup of over 200 compared
to direct summation.

2. Mixed rank

In this section, we present results for test cases where the
N interacting point-multipoles have different maximum mul-
tipolar orders. Each point multipole has either just charges
(p = 0), charges and dipoles (p = 1), or charges, dipoles,
and quadrupoles (p = 2). Table VI shows the distribution of
multipolar orders for system sizes N € {10*, 10°, 10°}. As an

example, for the system with N = 10* particles, 3430 had only
charges, 3284 had charges and dipoles, and 3286 had charges,
dipoles, and quadrupoles.

We developed a mixed-rank version of direct summation
as a base for comparison. The mixed rank version contains dif-
ferent direct sum routines specifically designed for the ranks
of the interacting particles. As a result, the cost of interactions
varies depending on the sum of the orders of the interact-
ing point multipoles. This version was about 2.5 times faster
than the full rank version [compare values in Tables V(a)
and VII(a)]. It is conceptually straightforward to adapt the
particle-cluster and cluster-particle algorithms for mixed rank
interactions. The key is to adaptively change the upper limit
of the summation over ||s|| and ||n|| in the formulae for the
quantities in question, depending on the rank of the interacting
particles.

Figure 13 shows the root mean square errors in the poten-
tial and force for N € {10%, 10°, 10} with order of approxima-
tion £ € {0,2,4,6,8,10, 12}, Ng = 500, and MAC parameters
6 € {0.5,0.75,0.9}.

As expected, the errors in both the potential and force
for the mixed rank are a little higher than in the full rank.
This is because the mixed-rank test case includes low-rank
interactions where the kernels for the potential and forces
decay at a lower rate than r% and r%, respectively, expected for
full-rank interactions. Nevertheless, the force computations in

FIG. 13. Errors in potential and force for system with
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mixed ranks. Top row: Errors in potential (E,). Bottom
row: Errors in force (Ef). Order of multipoles, p €

RMSE in forces, Ef
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{0,1,2}. N € {10%,10°,10%}, & € {0.5,0.75,0.9}, No
=500,and £ =0:2:12.
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FIG. 14. Comparison of the CPU times (s) of the
treecode methods to direct summation. Mixed multi-
pole ranks, p € {0,1,2}. N € {104,10°,10°}, 6 €
{0.5,0.75,0.9}, Ng =500, and £ =0 : 2 : 12.
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the mixed-rank case have high accuracy as well. Figure 14
compares the CPU times of the mixed-rank versions of the
algorithms to direct sum. Both algorithms achieve excellent
speedup over direct sum.

Table VII provides numerical results for the CPU times
of direct sum and the treecode algorithms.

For 6 = 0.75 and order of approximation £ = 0, both algo-
rithms provide an error in the force of 1078 with a speedup over
direct sum of about 4.5 when N = 10%, 26 when N = 10°, and
172 when N = 10°. Because the potential energy and torques
have similar decay rate to the force, we expect the algorithms
to be similarly efficient in approximating these quantities.

V. CONCLUSION

In this work, we have developed two mesh-free treecode
algorithms we call particle-cluster and cluster-particle for free-
space multipolar electrostatic interactions. We used the algo-
rithms to compute the potential and force on different sets of
interacting particles and compared the results to direct sum-
mation. We found both algorithms to be highly accurate in
computing forces for full-rank and mixed-rank systems and
offer substantial speedup over direct sum calculations.

We explicated the dependence of the performance of the
algorithms on the MAC parameter 6 and the order of approx-
imation £. We compared the two algorithms and explained
why even though particle-cluster is faster than cluster-particle
for point-charges, in their current construction, cluster-particle
is faster and perhaps more efficient than particle-cluster for
multipolar interactions.

Because a significant fraction of molecular simulations are
run in parallel, we provided results on the parallel scaling of
both algorithms over 32 processors. We found the algorithms
to have good scaling over the modest number of processors.

We believe this work as an important step in the design
of fast evaluation methods for Cartesian multipolar electro-
static interactions. The algorithms will be most useful for high
order permanent Cartesian multipolar electrostatic interactions
and can be implemented as part of the AMOEBA polarizable
force-fields in MD software such as TINKER,>® DL_POLY,>*

and AMBER. In the future, the author hopes to extend this
work to simulations in periodic boundary conditions and to
other pair potentials.
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APPENDIX: ADDITIONAL DERIVATIONS
AND A SKETCH OF CONVERGENCE
OF THE POTENTIAL

In this section, we derive the formulae for approximat-
ing the electric field and torque within the particle-cluster and
cluster-particle algorithms.

1. Formulae for particle-cluster approximations
a. Approximation of the electric field

The exact electric field at x; is given as E; ¢ = =V, V; ¢
= VyVic and it is approximated through the use of
Eq. (7b) as

¢t p
Tl DT ey Y My - vk

Ei’cz
[Ik[[=0 ||s[|=0 " y;eC
4 P 1
= 20 D) oV (B eiyo) HY(O)
[IK[1=0 [[s]|=0 "

a)l](+s+el¢(xi’ yc)
— | " g(xi,y.) | HE(C)

M~
M=

k!
[1k[1=0 [|s||=0
3;,(+S+e3 ¢(Xiayc)

S+e|

¢ P b

= e | Hyo),

[1k11=0 [Is[1=0 | ; s+e;
bk 3
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where e; =(1,0,0), e =(0,1,0), and e3 = (0,0, 1).

b. Approximation of the torque

To evaluate the torque on i in the « direction due to cluster
C, M; is rotated infinitesimally counter-clockwise about the

@-axis to get M, . Then the torque, 7€ , using the definition

L,a
in the work of SPD,!” is approximated as

p
= D, MILOVic (Ala)
InTI=0
l )4 P
~ Y DM, S B,y HE(C).
[EE I1ST=0
(Alb)

Equation (Alb) is the {th order approximation of the
torque on particle i in the a-direction due to a well separated
cluster C.

2. Formulae for cluster-particle approximations
a. Approximation of the electric field

The exact electric field at x; is given as E;¢
= —V,, Vi c and it is approximated through the use of Eq. (14c)

as
. p
Z Z Vxl-(Xi_Xc)k
|1KT1=0 [[sT/=0
¢ P ki(x; —x )k_e‘
=0 D et - xk e | (A2)
|1kTT=0 [STT=0 k3(x; — x0 )k

b. Approximation of the torque

To evaluate the torque on particle i, in cluster C, in the
«a direction due to source particles j, M; is rotated infinitesi-
mally counter-clockwise about the a-axis to get M;,. Then
the torque, T , using the definition in Ref. 17 and Eq. (14b),
is approx1mated as

p

= D, MIAMVic (A3a)
[In]|=0
t P
= >, 2, oMM, mRe - xo. (A3b)
[1k]1=0 [In]|=0

Equation (A3b) is the (th order approximation of the
torque on particle i, in cluster C, in the a-direction due to
M source particles j.

3. Error analysis

We provide a condensed analysis of the error in the
particle-cluster approximation of the potential in Eq. (7a)
for the Coulomb kernel ¢(x;,y.) = FIM The approach
employed here can be extended to error analysis of the poten-
tial energy, force, electric field, and torque. Similar analy-
sis can be done for the cluster-particle approximations as

well. We consider the error due to an approximation to order

J. Chem. Phys. 147, 164104 (2017)

¢ — 1. The potential from Eqs. (7a) and (7b) can be rewritten
as

p -1
~ Y M NI YI — ¥ (Ad)
lIslI=0y;eC (k| =0
)4 -1
= DM Y ey -y (A9)
Is||=0y;eC [IKk[|=0
where from Eq. (8), we define
ax(Xi,¥o) = b(Xi, ¥e) = k, KOXiye)  (A6)

The error, E; ¢, from approximating V; ¢ by the ({—1)th Taylor
approximation is given by the absolute value of the sum of the
neglected terms,

P )
DU DIME D anxiy ) - v
lIs||=0y;eC [k[|=€
= Z DUME D Auxi Yoy, (AT)
|Isl|=0y;eC n>¢t
with
AnXi Yo ¥) = D Xy - ¥k (A8)
|1k||=n
A recurrence relation for A,(x;,y,.y;) is available™ and is
given by
nR*A, — (2n — DaA,_1 +(n — D)B*A,_ = 0, (A9)

where R = |x;—y,.| asdefinedinFig. 2, @ = (x;-Yy,)- (yj -y
and B8 = |y; — y.|. Comparison of Eq. (A9) to the recurrence
relation for the Legendre polynomials P, (x) in one-dimension,

nP,(x) —

(2n = DPp(x) + (n = DPra(x) =0, (Al0O)

leads to the closed form formula for An** given by

=i l7) 7 )
R\R BR

(Al1)

Using the property that |P,(x)] < 1 for [x|] < 1 and the fact
that
X — . . —
i _ ( 1 yc) (YJ yC) < 1, (A12)
ﬂR |Xi - y¢| |y] - ycl

A, can be bounded as

ly —y.\" o
n(x,,ymy,)\_—( ’R ) <% (A13)

where we have use the fact that the Taylor approximation is

_yc|

ly
only employed when ———= < ¢, the multipole acceptability

criterion, and 0 < 6 < 1. By noting that
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P ALY ¥) = Y k(i Y ) — Y
[Ik||=n

= - YO Y k(i ¥, - YO,
|k ||=n

(Al4)

the error can be bounded as

» .
Eic=]Y > MY Axiy,.y)

l1sl1=0y;€C n>t
P [eS)
< 3 3 Doy
lIsl1=0y;€C n>t
p -
—S
< 3 Sl vl vy
lIsl1=0y;€C n>t
< KZn 9", (A15)
n>l
with
K= Y M ]
=maxd > D My -v g
® | lisli=0y;eC
Observe that
Zn~9" =06 +(C+ DO £ (£ +2)02 4 ..
n>{
— fe[’ Z 97! + 9€+l Z nen—l
n=0 n=1
(o] d (o]
_ ppl n +1 & n
=06° > 0" +0 7 Zo)
n=0 n=0
_ 00 g d (L
1-6 do\1-0
f@€ 0[)+1
=t — (A16)
1-6 (1-6)?
and thus from Eq. (A15), the bound on the error is
geé’ 9[+1
0<Eic<K{—+——". Al7
C {1_9 (1_9)2} (A17)
As the order of the Taylor approximation, ¢— oo,
}im £6¢ = 0, and
¢ -1 ¢
lim ¢6¢ = lim — = lim ———— = — lim — =
s P B e T N T P
(A18)

Thus, as expected, the error of the particle-cluster multipole
approximation decays to zero with increasing order of the
approximation.
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