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ABSTRACT: Particle mesh Ewald (PME) is generally the method of choice for handling
electrostatics in simulations with periodic boundary conditions. The excellent efficiency of
PME on low processor counts is largely due to the use of the fast Fourier transform (FFT).
However, due to the FFT’s high communication cost, PME scales poorly in parallel. We
develop a periodic Coulomb tree (PCT) method for electrostatic interactions in periodic
boundary conditions as an alternative to PME in parallel simulations. We verify the
accuracy of PCT by comparison of structural and dynamical properties of three different
systems obtained via MD simulations using PME and PCT and provide parallel timing
comparisons of the two methods on up to 1024 cores.

1. INTRODUCTION

Periodic boundary conditions are employed in a significant
number of molecular simulations of bulk properties to reduce
surface effects.1 Consider a system ofN interacting point charges
q1, q2, ..., qN at positions r1, r2, ..., rN in a box of length L, with
periodic boundary conditions and with the additional constraint

that∑ == q 0i
N

i1 . Let the set of vectors {v1, v2, v3} be a basis for
the simulation cell, that is, ri = c1v1 + c2v2 + c3v3 for i = 1...N and cj
is a real number for j = 1...3. The volume of the simulation cell V
= |v1·v2 × v3|. We also define a basis for the reciprocal space as
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where n = (n1, n2, n3) identifies a unique cell and ni is an integer.
For example, n = (0, 0, 0) refers to the fundamental cell or our
system of interest. The prime on the sum over nmeans that the i
= j term is omitted when n = (0, 0, 0).
Ewald1−3 recast equation 1 into absolutely convergent series,

one in real space dominated by the sum
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and the other in reciprocal space given by
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where k = k1w1 + k2w2 + k3w3, ki is an integer for i = 1...3, k = |k|,
and
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The decay rate of the sums in eqs 2 and 3 is controlled by α. For
small values of α, erfc(αr) decays slowly, but correspondingly,
exp(−k2/4α2) decays quickly. The reverse is seen for large α
values. With a careful choice of parameters, the conventional
Ewald sum for a system can be evaluated at O(N3/2) cost.3,4

Another approach to computing the conventional Ewald sum is
via a Fourier Poisson approach,5 which scales as O(NlogN).
Particle mesh Ewald (PME)6,7 is the method employed in a
majority of simulations to compute eq 1. PME chooses a large α
value to ensure that Udir decays quickly whileUrec decays slowly.
Then Udir is computed in O(N) time using a cutoff and Urec is
evaluated in O(NlogN) by approximating the structure factor
S(k) on amesh using an FFT. Thus, the overall cost for the PME
method is O(NlogN).PME has been shown to be very efficient
for simulations on a small number of processors.6−9 However,
this efficiency degrades severely with increasing processor count
primarily due to the intensive global communications cost for
the parallel 3D FFT. There are ongoing efforts to develop
parallel 3D FFT algorithms, which scale to large processors
using 2D decompositions.10−13 However, these algorithms are
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typically developed for specific hardwares, and they lose
performance when ported to different systems with different
network topologies.13 Additionally, the effort to adapt them for
MD or Monte Carlo simulations requires expertise and
hardware knowledge typically beyond the skills or time of
practitioners. The need to improve the scalability of mesh
methods for electrostatics in MD simulation softwares have led
to varied strategies such as performing the FFT on a subset of
processors as in GROMACS14 and the development of specific
FFT software as in DL_POLY15,16 and LAMMPS.17,18 These all
still suffer from the poor scaling properties of the FFT. One
alternative to PME is the multilevel summation method
(MSM).19 While MSM is promising, currently, it has not been
shown to scale better than particle mesh Ewald or particle−
particle particle−mesh (P3M).19,20 Another promising alter-
native is the isotropic periodic sum method,21,22 but this is
designed for homogeneous systems, and as a result, it is not very
efficient for heterogeneous systems.
In this paper, we develop and present a mesh-free hierarchical

clustering algorithm called the periodic Coulomb treecode
(PCT) method as an alternative to particle mesh Ewald in
parallel simulations. The performance of the treecode method,
unlike mesh-based methods, is independent of the distribution
of the particles. Themethod is simple and suitable for free-space,
3D, 2D, and 1D periodic boundary conditions. In addition, it
lays the framework for the implementation of previous works on
higher-order electrostatic multipoles23,24 in simulation packages
such as TINKER,25 AMBER,26 and DL_POLY.27 As a proof of
concept, we incorporate ourmethod into the simulation package
DL_POLY Classic28 and compare structural and dynamical
properties of (i) water, (ii) water with an Na+ ion and Cl− ion,
and (iii) valinoymycin in water, obtained via MD simulations
using PME and PCT. We also provide parallel timing
comparisons of PME and PCT to shed light on the potential
efficiency of PCT. DL_POLY Classic uses a replicated data
strategy29 for load-balancing, which makes it suitable for the tree
algorithm.
The rest of the paper is organized as follows: Section 2

introduces and develops the periodic Coulomb tree method.
Section 3 explains the modifications made to DL_POLY Classic
in order to implement PCT in the package. Section 4 provides
simulation and timing results for comparison of PME to PCT
and conclude with a summary and future directions.

2. PERIODIC COULOMB TREE METHOD (PCT)
The periodic Coulomb Tree method computes the electrostatic
energy of the system directly via eq 1 using a Cartesian treecode
algorithm. We provide a short introduction to the treecode
algorithm and explain how we extend the method to periodic
boundary conditions.

2.1. Treecode Algorithm. There are several variants of the
treecode algorithm including particle−cluster,30−39 cluster−
particle,36,40 and cluster−cluster methods.41−44 Here, our
implementation focuses on the particle−cluster variant. The
algorithm hierarchically restructures the interacting particles
into an oct-tree. The root of the tree is the smallest bounding box
that encloses the particles. The root is divided into eight children
(clusters), which form the first level of the tree. Each of these
eight children (clusters) are then divided into eight children
(clusters). The process continues recursively on each branch
and terminates when the number of particles in a cluster is less
than or equal to a predetermined number,N0. The last cluster at
the end is called a leaf. An example clustering in 2D is shown in
Figure 1. In the example, the clustering terminates for N0 = 3.

2.2. The Free-Space Coulomb Treecode. The treecode
for the

r
1 kernel has been well studied and implemented in

several applications.24,30,32,34,36,45 The free-space Coulomb
treecode computes eq 1 for just the fundamental cell with no
interactions with the periodic images. In this case, the energy is
given by
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where Ui is the energy due to the interaction of particle i with all
the other particles in the fundamental cell. The efficiency of the
treecode is largely due to howUi is computed. Let particle i, with
charge qi, be at position xi interacting with all the other particles,
which are at position yj, {yj, qj, j = 1:N}. Then,
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=
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The treecode uses the hierarchical tree to separate the particle−
particle interactions in eq 6 into near-field and far-field
interactions. The particle−particle interactions are replaced by
particle−cluster interactions and eq 6 becomes

∑ ∑ ∑ϕ ϕ= =
≠ ∈

U q q q qx x y x y( ) ( , ) ( , )i i
j i

N

j i j i
C C

j i j
yj (7)

where C represents clusters. Particle−cluster interactions that
are near field are computed directly while those that are far field
are approximated by a Taylor approximation about the center of
the cluster. A schematic of a particle−cluster interaction is
shown in Figure 2. Cluster C has radius r and center yc, and the

Figure 1. 2D hierarchical clustering with N0 = 3.
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distance from xi to yc is R. A particle−cluster interaction is
considered to be far field or well separated when θ≤r

R
, where

0 < θ < 1.
2.2.1. Approximations for Far-Field Interactions. For a well-

separated particle−cluster interaction, the potential energy due
to the interactions is approximated by a pth order three-
dimensional Taylor polynomial given as
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where k = ⟨k1, k2, k3⟩, ∥k∥ = k1 + k2 + k3∥, k! = k1!k2!k3!, ∂y
k =

∂y1
k1
∂y2
k2
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k = (yj1 − yc1)
k1(yj2 − yc2)

k2(yj3 − yc3)
k3. Eq 10

is a pth order Taylor approximation for the particle−cluster
interaction with Taylor coefficients

ϕ=
!
∂a x y

k
x y( , )

1
( , )i c i ck y

k
(11)

and cluster moments

∑= −
∈

M C q y y( ) ( )
C

j j ck
y

k

j (12)

We note that the moments defined above have no dependence
on the target particle i. As such, the moments for each cluster can
be computed, stored, and reused in eq 10 for all far-field
interactions of the cluster in question with different target
particles.
From eqs 8−10, the force on particle i due to the particles in a

far-field cluster C is approximated as
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where e1 = ⟨1,0,0⟩, e2 = ⟨0,1,0⟩, and e3 = ⟨0,0,1⟩. From eqs 14 to
15, we have applied eq 11 to get
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We apply the force approximation in eq 15 to approximate a
far-field electrostatic contribution to the virial as
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where ri,C is the distance from particle i to the center of cluster C.
To avoid explicit formulas for higher-order derivatives, the

Taylor coefficient ak is computed by the recurrence relation
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where x = ⟨x1, x2, x3⟩ and y = ⟨y1, y2, y3⟩. The starting value for
the recurrence is the coefficient for ∥k∥ = 0, which is computed
explicitly. The procedure sets ak = 0 when any of the indices is
negative. In our implementation, x = xi and y = yc. The derivation
for the recurrence above has been provided by previous
authors.32,34

2.2.2. Pseudo-Code for the Parallel Free-Space Treecode.
Algorithm 1 below is a pseudo-code for the parallel free-space
particle−cluster treecode. The parallelization is via a replicated
data strategy with MPI. The user specifies the order of Taylor
approximation, p, the multipole acceptability criterion (MAC),
θ, and the maximum number of particles in a leaf, N0. Because
each processor stores all the particles, each builds a copy of the
tree. The particle−cluster interactions are then split over the P
processors. A processor with label ∈ { − }P0, ..., 1 computes
all the particle−cluster interactions for particles numbered

= +×A 1N
P1 to = + ×A N

P2
( 1) . The algorithm loops over

particles A1 toA2, and calls the subroutine evaluate-fs-pc in line 5
to perform a particle−root interaction for each particle. The
MAC is not satisfied for any of the particle−root interaction;
hence, the algorithm descends to the next level of the tree, that is,
the children of the current cluster. On this level, the MAC is
tested again for each potential interaction between the particle
and the clusters on this level of the tree. If the MAC is satisfied
for a particular particle−cluster pair, the algorithm performs two
tasks:
1. If the moments of the current cluster is not available, it

evaluates and stores the moments using eq 12,
2. It approximates the particle−cluster interaction using the

Taylor series polynomial in eqs 10 and 15.
If the MAC fails for a particle−cluster pair, the algorithm

descends to the next level and checks the children of the cluster.
If the MAC keeps failing, the procedure will continue until the
algorithm reaches a leaf. The particle−leaf interaction is then
evaluated by direct summation.
A global sum of the potential energy is performed at the end of

each computation.

Figure 2. Interaction between a particle at xi and particles at yj in cluster
C. The cluster has center yc and radius r, and the particle−cluster
distance is R = |xi − yc|.
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2.3. The Periodic Coulomb Tree.The focus of this paper is
to present the periodic Coulomb tree (PCT) method as a viable
alternative to particle mesh Ewald for parallel simulations using
replicated data strategy. PCT extends the free-space treecode to
periodic boundary conditions. It approximates eq 1 over a given
finite set of periodic images. Similar to the development of the
free-space treecode, we consider a particle i, with charge qi, at
position xi interacting with particles yj, {yj, qj = 1:N}, and their
periodic images. The energy due to this interaction can be
written as
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where the first summation is the energy due to interactions with
particles in the fundamental cell, and the second summation is
the energy due to interactions with the periodic images.
Different periodic boundary conditions can be handled in
PCT by simply specifying the correct range of n = (n1, n2, n3)
where ni, i∈ {1,2,3}, is an integer. In this work, we apply periodic
boundary conditions in all three directions, as such, all three

coordinates of n vary. To specify periodic boundary conditions
in two dimensions, one coordinate is held constant, and the
other two vary. Periodic boundary conditions in one dimension
is achieved by holding two coordinates constant and varying the
third. The algorithm defaults to the free-space boundary
condition when n = 0, which means the second summation in
eq 19 vanishes.

2.3.1. Approximations for Far-Field Interactions. In the
periodic tree algorithm, the fundamental cell is hierarchically
clustered into the tree, and this clustering is maintained in the
periodic replicas. Figure 3 is a schematic of a 2D periodic tree
showing a fundamental cell hierarchically clustered up to level 2
and the nearest neighbor periodic images. To approximate
Up(xi) in eq 19, observe that the first summation is exactly the
free-space energy,U(xi), which is approximated by the pth order
Taylor approximation in eq 10. The second sum is the energy
due to the interaction of particle i in the fundamental cell with
the particles in the periodic images. This sum is also split into a
near-field and a far-field interaction. Thus, the far-field
interaction is approximated as
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Figure 3. A schematic of a 2D periodic tree showing a hierarchically
clustered fundamental cell and its nearest neighbors. The maximum
number of particles in a leaf is N0 = 3.
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where in eq 23 the sum over infinite periodic images is replaced
by a sum over finite periodic images determined by user input s
≥ 0. For example, s = 0 limits the algorithm to only interactions
in the fundamental cell while s = 1 includes interactions with the
nearest periodic images. The key time and memory-saving idea
underlying the periodic tree is that the moments for the periodic
clusters in eq 23 are the same as the moments for the clusters in
the fundamental cell. Hence, there is no need to build and store
the periodic images. Because the distance between particles in an
image is the same as in the fundamental cell, the hierarchical tree
for each image is the same as the hierarchical tree for the
fundamental cell. As such, the algorithm only builds the tree for
the fundamental cell. The interactions with the periodic images
reduce to a shifted interaction with the fundamental cell. The
only new evaluation required is to compute the multidimen-
sional Taylor coefficients ak(xi, yc + nL). The far-field force on
particle i is approximated as
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Another computationally efficient feature of the periodic tree is
that the interaction between particles in the fundamental cell
and the periodic images happens at higher levels of the tree for
periodic images that are farther away. As an example, consider
the large dark filled particle, labeled i, in Figure 3. To fix ideas, we
focus on the interaction of particle i with the periodic images in
the lower left and lower right nearest neighbors (clusters). The
initial interaction of i with the lower left cluster fails the
multipole acceptability criterion since θ < r

R
≈ 1. The algorithm

then descends to the lower level, and the method proceeds
recursively. On the other hand, the initial interaction with the
lower right cluster, which is farther from particle i, will pass the
multipole acceptability criterion since r

R
< 0.5 < θ. Thus, particle

i interacts once with the lower right periodic image with no
recursive calls to lower level clusters.
2.3.2. Pseudo-Code for the Parallel Periodic Coulomb Tree

Method. The PCT algorithm is similar to the free-space
algorithm. It takes in the same inputs as the free-space algorithm
as well as the additional parameter, s, which determines the
number of periodic images to be included in the computation.
The particles are split over the processors in the same way as the
free-space method. However, for PCT, in addition to the loop
over particles, there is an additional loop over the periodic
images. As such, line 5 of Algorithm 1 is expanded to include a
loop over the periodic images. The pseudo-code for PCT is
given in Algorithm 2.
We implemented the periodic PCT method in DL_POLY

Classic. The details of the implementation are provided in
Section 1 of the Supporting Information.

3. NUMERICAL RESULTS

Our goal in this section is to provide numerical justification for
the efficiency of PCT. We compare PME and PCT results from
NVT ensemble MD simulations for three systems:

1. A total of 6912 molecules of SPC water in a cubic cell of
length 69.5 Å at 307.46 K with a Nose−́Hoover
thermostat;

2. Sodium chloride in 139 molecules of SPC water in a
cubic cell of length 17.9 Å at 295 K with an Evans
Gaussian thermostat;

3. Valinomycin molecule in 1223 molecules of SPC water
in a truncated octahedral cell with width 49.9 Å at 310 K,
also with an Evans Gaussian thermostat.

Further details on the systems are given in the Supporting
Information.

3.1. System 1. We compare PME and PCT results for
structural and dynamical properties of an NVT ensemble MD
simulation of 6912 molecules of SPC water in a (69.5 Å)3 box at
307.46 K.46,47

In addition to the results on structural and dynamical
properties, we provide timing comparisons for a system of N =
20,736 atoms (6912 water molecules) and N = 49,152 atoms
(16,384 water molecules) on up to 512 and 1024 parallel cores,
respectively.

3.1.1. Radial Distribution Functions. In Figure 4, we
compare the O−O, O−H, and H−H radial distribution
functions for both PME and PCT with order of approximation

Figure 4. The O−O (top), O−H (middle), and H−H (bottom) radial
distribution functions for PME and PCT with p ∈ {0,2,4} and s = 1.
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p ∈ {0,2,4}. The lattice sum for PCT in Figure 4 includes the
fundamental cell and the nearest neighbor images, that is, s = 1
and p ∈ {0,2,4} in eqs 23 and 24.
From the plots, we see that the radial distribution functions

obtained using PCTmatch well with those for PME for all orders
of PCT.
3.1.2. Velocity and Force Autocorrelation Functions. Figure

5 is a comparison of the unnormalized center of mass velocity

and force autocorrelation functions obtained via PME and PCT.
The unnormalized functions highlight the differences in the
magnitude of the initial correlation for PME and PCT. The
forces computed by the two methods necessarily differ because
the potential energy functions are different. PME approximates
eqs 2 and 3 using a cutoff in real space and a finite set of the
infinite reciprocal space k vectors, respectively, while PCT
approximates eq 1 using a finite set of the infinite real space n
vectors and far-field Taylor approximations. We see from Figure
5 that PME and PCT produce similar dynamics. The peaks and
valleys in the functions occur at the same times. The rate of
decay of the autocorrelation functions are the same for both
PME and PCT. We do not expect perfect agreement between
the functions because the potentials and the approximations are
different.
A spectral analysis of the normalized correlation functions

produce almost indistinguishable results between PME and
PCT. The plots from the spectral analysis are given in Section
2.1 of the Supporting Information.
3.1.3. Mean Square Displacement. The mean square

displacements of the oxygen and hydrogen atoms are shown
in Figure 6. We computed the self-diffusion coefficient DH2O as
an average of the diffusion coefficient of oxygen, DO and
hydrogen, DH using the Einstein relation.1 The results are given
in Table 1.
These affirm the similarities in the dynamics produced by

PME and PCT.
3.1.4. Distance-Dependent Kirkwood G-Factor Gk(r). To

give a more complete picture of PCT, we provide the results of
computing the Kirkwood G-factor, Gk(r), using PME and PCT
with s = 1 in Figure 7 where

∑μ μ= ·
≤

G r( )k i
r r

j
ij (25)

and μi and μj are the unit vectors in the direction of molecule i
and molecule j, respectively. As noted by several authors,48−51

the Kirkwood G-factor depends on the method for computing
the long-range electrostatic interactions. It is not surprising that
Gk(r) is different for PME and PCT in Figure 7. Despite this
difference, both methods produce the same Kirkwood
correlation length rk = 53.656Å. The size of the electrostatic
interaction cutoff has an effect on Gk(r).

49,50 There is no cutoff
for PCT, and setting s ≥ 1 approximates an infinite system. We

Figure 5. Center of mass velocity (left) and force (right)
autocorrelation functions for PME and PCT with p∈ {0,2,4} and s = 1.

Figure 6. The mean square displacement for Oxygen (top) and
hydrogen (bottom) atoms.

Table 1. Self-Diffusion Coefficients,DH2O± 0.1 (10−9 m2 s−1)
of H2O for PME and PCT

Method DO DH DH2O

PME 11.1 11.2 11.2
PCT (p = 0) 8.3 8.3 8.3
PCT (p = 2) 9.4 9.5 9.5
PCT (p = 4) 9.5 9.6 9.5

Figure 7. Distance-dependent Kirkwood G-factor for PME and PCT
for system 1
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will show the effect of periodic images onGk(r) in our results for
system 2 in the next section.
3.1.5. Effect of Periodic Images. We also investigated the

effect and importance of the number of periodic images included
in the lattice sum for PCT. We performed MD simulations and
computed the radial distribution and autocorrelation functions
for s ∈ {0,1,2,3}. When s = 0, that means there are no periodic
images, and we expect the surface effects to be significant. For s =
1, s = 2, and s = 3, there are 26, 124, and 342 periodic images,
respectively. Figure 8 shows the radial distribution functions for

p = 4 and s ∈ {0,1,2,3}. We see that the s = 0 results deviate
significantly from the s > 0 results. However, there is no
significant difference between s = 1 and s > 1 for the system we
studied. Thus, the most efficient computational choice is s = 1.
Figure 9a,b is the plot of the unnormalized and normalized
autocorrelation functions, respectively, for p = 4 and s ∈
{0,1,2,3}. The figures reinforce the importance and sufficiency of
including the nearest neighbor periodic images. There is a big
difference between s = 0 and s > 0 but little difference between s
= 1 and s ∈ {2,3}.
3.2. System 2. Here, we compare PCT to PME for an NVT

system of Na+ and Cl− ions in a solution of 139 SPC water
molecules.
3.2.1. Radial Distribution Functions. The radial distribution

functions from PME and PCT are compared in Figure 10. We
see that PCT largely matches PME.
3.2.2. Distance-Dependent Kirkwood G-Factor Gk(r). The

Kirkwood G-Factor computed using only the water molecules is
shown in Figure 11. The behavior is similar to the behavior
observed for system 1 in Figure 7. For both PME and PCT, for
all orders, the Kirkwood correlation length is rk = 15.5158Å.
We also looked at the effect of periodic images on this system.

The results, provided in Section 2.2 of the Supporting
Information, reinforce our conclusion from system 1 that s = 1
is the most efficient choice for the periodic images in PCT.
3.3. System 3. The third system for comparison is a

molecule of valinomycin in 1223 molecules of SPC water. The
parameters of the system are described in a previous work by
several authors.52−55 Figure 12 shows the radial distribution
function for several atom pairs for PME and PCT. The notation
used in the plots of the radial distribution function is explained in
Table 2.
We conclude from Figure 12 that PME and PCT produce

qualitatively similar radial distribution functions for system 3.

3.4. Timing Comparisons. The previous sections provide
evidence that PCT produces results similar to PME. This section
provides support for adopting PCT as an alternative to PME for
parallel simulations employing replicated data strategy. We
provide parallel timing comparisons for PME and PCT for a

Figure 8. Radial distribution functions for different PCT lattice sums.

Figure 9. Autocorrelation functions for different PCT lattice sums with
p = 4 and s ∈ {0,1,2,3}. Left is velocity and right is force

Figure 10. The Na+−Cl− (top), Na+−O (middle) and Cl−−O
(bottom) radial distribution functions
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system of (a) N = 20,736 atoms, (b) N = 49,152 and (c) N =
393,216 atoms. The PME parameters for all three systems are
the same with rcut = 8.0 Å, α = 0.036037Å−1 and b-splines of
order 8. The N = 20,736 atoms and N = 49,152 systems had a
grid size of 32 × 32 × 32 while theN = 393,216 atoms had a grid
size of 64 × 64 × 64. The timing runs were performed on Vesta,
Argonne Leadership Computing Facility’s test and development
platform. Vesta is an IBM BG/Q with 2048 nodes and 16 cores
per node. Each core has 1 GB RAM of memory. The
interconnect is a 5D Torus Proprietary Network and the default
FFT routine on Vesta is FFTW3 version 3.2.3.

Figure 13 is a plot of the CPU time per time step for PME and
PCT for different processor counts obtained as an average over

100 MD steps for systems (a) and (b) and over 10 MD steps for
system (c). The PCT plots are for s = 1 and order of
approximation p ∈ {0,2,4}. We see that although PME is very
efficient for a small number of processors, the communication
overhead results in poor parallel scaling on 16 processors or
more. The communication overhead for PCT is less severe, and
it becomes more efficient than PME for a higher processor size.
Table 3 shows the data for the plots in Figure 13. We see that for
N = 20,736, PCT provides 5, 4, and 3 times the speedup over
PME for multipole orders p = 0, p = 2, and p = 4, respectively.
ForN = 49,152, the speedup provided is 3, 2, and 1.5 times for p
= 0, p = 2, and p = 4, respectively. For N = 393,216, we see
approximately 2 times the speedup for p = 0 and p = 2 and 1.5
times the speedup for p = 4 in spite of the fact that the efficiency
of the replicated data parallelization strategy implemented in
DL_POLY Classic decays with an increasing system size. Thus,
for applications where low order approximation suffices, PCT
can provide a substantial speedup over PME.
In Section 2.4 of the Supporting Information, we provide

timing comparisons for s = 2 and s = 3 for N = 20,736 and N =
49,152. As expected, PCT is less efficient in these regimes but it
still offers some speedup over PME for high processor counts.

4. CONCLUSIONS
We developed the periodic Coulomb tree (PCT) method as an
alternative to particle mesh Ewald (PME) for parallel MD
simulations. PCT unlike mesh methods is suitable for both
uniform and nonuniform particle distributions. In addition, it is
easily adapted for simulations with periodic boundary
conditions in one, two, or three dimensions as well as
simulations with free-space boundary conditions.
Results from our MD simulations of liquid water showed that

PCT produces similar results to PME. Having verified the
accuracy of PCT, we provided parallel timing comparisons of
PCT to PME. We showed that for moderate sized systems, PCT
can provide up to five times the speedup over PME for parallel
simulations using replicated data strategy.

Figure 11. Distance-dependent Kirkwood G-factor for PME and PCT
for system 2 computed using water molecules.

Figure 12. Radial distribution functions from the simulation of
valinomycin in water for PME and PCT with s = 1.

Table 2. Notation for Radial Distribution Plots for System 3

Notation Atom

OW oxygen of a water molecule
CT sp3 hybridized carbon of valinomycin
C sp2 hybridized carbon of valinomycin
O oxygen of the amide carbonyl
Oe oxygen of the ester carbonyl
Os the ester linkage oxygen

Figure 13. CPU time per time step for different processor counts for
PME and PCT with s = 1.
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The current work was developed solely for CPUs. We
recognize that, increasingly, MD algorithms56−59 are being
developed for GPUs to take advantage of the speedup they offer
over CPUs. Several authors have worked on efficient GPU
implementations of treecode algorithms60−63 with speedup of
up to 60 times over comparable CPU implementations. A future
direction is to develop a GPU version of PCT.
The work presented here was motivated by the need to

circumvent the communication bottleneck of the FFT that is
necessary for PME. This bottleneck is more pronounced for
advanced potential energy surfaces involving multipolar electro-
statics where the reciprocal space grids are larger. We believe
extensions of the work presented here has the potential to
address the increased communication overhead for multipolar
electrostatic interactions.
A.1. Systems with a Net Charge
Our presentation assumed that our system was electrically
neutral. Here, we outline an approach for handling systems with
net charge in a box of length L. Let

∑=
=

q q
i

N

itot
1 (26)

= α
π

α− | |f x( ) e x3

3/2

2 2
and define a non-uniform unnormalized

screening charge density

ρ = − ·| |·q fx x x( ) ( )scr tot (27)

The Coulomb energy due to the interaction between a charge qi
at position x in the fundamental cell, n = 0, and the screening
charge density is

∫ ∫ρ=
| |

= −ρU
q
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and the total potential energy in the fundamental cell and all
periodic images is
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From eqs 30 to 31, we have used the fact that integrating over the
fundamental cell and all the periodic images is equivalent to an
integration over all space. Also from eqs 32 to 33, we used the

identity ∫ =α π
α

− | | xe d
R

x
3

2 2 3/2

3 . Thus, the Coulombic energy for a

systemwith a net charge is given by eq 1 plusUρscr given by eq 33.
For a system with zero charge, no correction is needed since qtot
= 0 and Uρscr = 0.
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Table 3. CPUTime (s) per Time Step for Processor Sizes {2i,i
= 0:1:10} for PME and PCT for System Size at N = 20,736
Particles, N = 49,152 Particles, and N = 393,216 Particles

processor size PME PCT: p = 0 PCT: p = 2 PCT: p = 4

N = 20,736, s = 1
1 8.67805 28.8081 41.2520 68.0480
2 4.83136 14.5215 20.7628 34.3301
4 2.90468 7.35779 10.4997 17.3771
8 1.91498 3.77268 5.38810 8.86696
16 1.81884 1.99112 2.77959 4.46939
32 1.51644 1.06732 1.47566 2.34844
64 1.43934 0.60921 0.82806 1.30177
128 1.32605 0.38817 0.51235 0.78323
256 1.30275 0.28508 0.36248 0.53504
512 1.32969 0.26176 0.31615 0.43552

N = 49,152, s = 1
1 20.1529 45.5423 87.8054 178.743
2 10.6257 23.0041 43.6811 88.2220
4 5.93655 11.7137 22.1210 44.0415
8 3.45139 6.11345 11.3493 22.4288
16 3.01048 3.58205 6.27550 12.0046
32 2.22345 2.01283 3.41449 6.37295
64 1.86014 1.21649 1.96697 3.40867
128 1.66483 0.81914 1.24471 2.15903
256 1.58822 0.61903 0.87862 1.44950
512 1.57578 0.54681 0.72271 1.12031
1024 1.61940 0.58861 0.71986 1.02650

N = 393,216, s = 1
1 243.250 534.736 1335.93 2693.18
2 127.851 242.189 479.366 1365.92
4 69.4414 126.249 245.519 496.416
8 51.0250 68.8101 128.836 254.327
16 44.0477 43.6415 74.4847 139.715
32 36.1062 27.7717 43.7535 77.6482
64 31.7569 19.6681 28.1768 46.3209
128 29.5851 15.4576 20.2416 30.6539
256 28.8597 13.6892 16.5793 22.9834
512 28.7980 13.1535 15.0942 19.4760
1024 29.7983 14.0134 15.4812 18.8424
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