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A B S T R A C T

Treecode algorithms efficiently approximate N-body interactions in 𝑂(𝑁) or 𝑂(𝑁 log𝑁). In
order to treat general 3D kernels, recent developments employ polynomial interpolation to
approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials.
Here, we develop an 𝑂(𝑁 log𝑁) tricubic interpolation based treecode method for 3D kernels.
The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor
product. The form allows for easy evaluation of the derivatives of the kernel, required in
dynamical simulations, which is not the case for the tensor product approach. We develop both
a particle-cluster and cluster-particle variants and present results for the Coulomb, screened
Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a
Lennard-Jones liquid using the tricubic treecode.

1. Introduction

This work concerns the evaluation of sums of the form

𝜙(𝐱𝑚) =
𝑁
∑

𝑛=1
(𝐱𝑚, 𝐲𝑛)𝑓𝑛, 𝑚 = 1,… ,𝑀, (1)

where {𝐱𝑚}, 𝑚 = 1,… ,𝑀 is a set of target particles, {𝐲𝑛}, 𝑛 = 1,… , 𝑁 is a set of source particles with weights {𝑓𝑛}, and 𝜙(𝐱) is a
otential (or velocity). The kernel (𝐱, 𝐲) represents the pairwise interaction between a target particle 𝐱 and a source particle 𝐲.
ums of this type arise in numerous applications in physics, chemistry, fluid dynamics, etc. [1–3], where the kernel may be a scalar
r a tensor and the weights are scalars or vectors. In applications where the target and source particles are the same, the 𝑛 = 𝑚 term
s excluded from the sum.

Direct computation of the sum in Eq. (1) requires 𝑂(𝑀𝑁), or 𝑂(𝑁2) operations for 𝑀 = 𝑁 , which is a significant computational
ottleneck when 𝑁 is large. A standard approach to reducing the computational cost is to partition the sum into a near-
ield interaction and a far-field interaction. The near-field interactions are computed exactly and the far-field interactions are
pproximated. One method for approximating the far-field is the particle-mesh method [4–6]. Particle-mesh methods interpolate the
articles onto a uniform grid and employ an FFT to compute the sum and thus reduce the 𝑂(𝑀𝑁) computational cost to 𝑂(𝑀 log𝑁).
n alternative approach to approximating the far-field is the tree-based methods [7,8]. Tree-based methods restructure the target
nd/or source particles into a hierarchical tree of clusters of particles. The computational cost is reduced by replacing far-field
article-particle interactions by particle-cluster or cluster-cluster interactions.

The present work is concerned with the latter category of methods. Several variants of treecode algorithms have been developed
o evaluate the sum in Eq. (1) in 𝑂(𝑁) [8,9] or 𝑂(𝑁 log𝑁) [7]. The early versions of treecode algorithms [7–22] were developed
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for specific kernels and employed analytic expansions specific to each kernel. More recent approaches are able to treat general
kernel functions, for example, the kernel-independent FMM which uses equivalent particle distribution determined by solving
linear systems [23,24], and the black-box FMM which uses polynomial interpolation at Chebyshev points combined with SVD
compression [25]. Recently, two interpolation based treecode algorithms have been developed, one based on barycentric Lagrange
interpolation at Chebyshev points, which is kernel independent [26], and the other based on barycentric Hermite interpolation [27].
Both the barycentric Lagrange and barycentric Hermite interpolation treecodes employ a tensor product of three single variable
polynomials to interpolate the 3D kernels.

In this paper, a treecode algorithm is presented based on tricubic interpolation of the kernel for pairwise interactions. Tricubic
nterpolation broadly refers to the method of local approximation of a function defined on a regular grid in three dimensions.
he general approach [28] is to represent the function within a unit cube by a polynomial in the three spatial variables, with the
nknown coefficients determined by requiring the function to have a given value or a given derivative at certain points, usually
he corners of the unit cube. The method is equivalent to a sequential application of three one-dimensional cubic interpolants [28],
ut its intrinsically three-dimensional formulation has better computational efficiency especially when the interpolation is used at
ultiple points inside each cube element. It is also advantageous when the derivatives of the interpolated function are needed, since

hey can be found easily by analytical, rather than numerical, differentiation of the tricubic polynomial.
In the treecode algorithm, the particles are recursively divided into a hierarchical tree of clusters, and the pairwise interactions

re replaced with particle-cluster interactions. An approximation for a far-field particle-cluster interaction is derived based on the
ricubic interpolation of the kernel using the values of the kernel function and its derivatives at the eight corners of the cluster.
he tricubic interpolation approach is chosen for its lower computational complexity and ease of evaluating exact derivatives of
he interpolated kernel when compared to triple one-dimensional cubic interpolation. In addition, the interpolant [28] implemented
ere has global 1 continuity in approximating the kernel. It however requires up to third order derivatives of the kernel. We present
oth a particle-cluster and a cluster-particle variants of the treecode algorithm. In a follow up paper, we investigate the effect of
lobal smoothness on the accuracy of treecodes.

The paper is organized as follows. In Section 2, we review the general approach of tricubic interpolation. In Section 3, we
erive an approximation for a particle-cluster interaction based on tricubic interpolation. We also use the simplicity of finding
nalytical derivatives of the interpolated kernel to derive an approximation for the derivatives of 𝜙. We analyze the error in a

far-field approximation with the tricubic interpolant, and present the full particle-cluster treecode algorithm. Section 4 develops
the cluster-particle variant suitable for simulations with disjoint sources and targets where the targets outnumber the sources [29].
Section 5 presents the treecode performance in terms of accuracy and CPU time for several kernels, as well as an MD simulation.
Conclusions and future work are discussed in Section 6.

2. Tricubic interpolation

In tricubic interpolation, a function 𝑓 is represented locally as a piecewise cubic polynomial of the form

𝑓 (𝑥, 𝑦, 𝑧) =
3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘𝑥

𝑖𝑦𝑗𝑧𝑘, (2)

within a mesh element that is a unit cube 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, and the 64 coefficients 𝑎𝑖𝑗𝑘 are determined from given data. An algorithm
to evaluate these coefficients was presented in [28], by using the values of

𝑆 ∶=
{

𝑓,
𝜕𝑓
𝜕𝑥
,
𝜕𝑓
𝜕𝑦
,
𝜕𝑓
𝜕𝑧
,
𝜕2𝑓
𝜕𝑥𝜕𝑦

,
𝜕𝑓 2

𝜕𝑥𝜕𝑧
,
𝜕𝑓 2

𝜕𝑦𝜕𝑧
,

𝜕3𝑓
𝜕𝑥𝜕𝑦𝜕𝑧

}

(3)

at the eight corners 𝑝1,… , 𝑝8 of the unit cube, see Fig. 1. First, the unknown coefficients 𝑎𝑖𝑗𝑘 are ordered into a vector 𝜶 by defining

𝛼1+𝑖+4𝑗+16𝑘 = 𝑎𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 = 0, 1, 2, 3. (4)

Similarly, the function and its derivatives are stacked into a vector 𝐛 as follows,

𝑏𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑓 (𝑝𝑖), 1 ≤ 𝑖 ≤ 8,
𝜕𝑓
𝜕𝑥

(𝑝𝑖−8), 9 ≤ 𝑖 ≤ 16,

𝜕𝑓
𝜕𝑦

(𝑝𝑖−16), 17 ≤ 𝑖 ≤ 24,

𝜕𝑓
𝜕𝑧

(𝑝𝑖−24), 25 ≤ 𝑖 ≤ 32,

𝜕2𝑓
𝜕𝑥𝜕𝑦

(𝑝𝑖−32), 33 ≤ 𝑖 ≤ 40,

𝜕2𝑓
𝜕𝑥𝜕𝑧

(𝑝𝑖−40), 41 ≤ 𝑖 ≤ 48,

𝜕2𝑓
𝜕𝑦𝜕𝑧

(𝑝𝑖−48), 49 ≤ 𝑖 ≤ 56,

𝜕3𝑓
(𝑝𝑖−56), 57 ≤ 𝑖 ≤ 64.

(5)
⎩ 𝜕𝑥𝜕𝑦𝜕𝑧
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Fig. 1. A schematic of the unit cube for the tricubic interpolant.

hen the analytical expressions for the derivatives of the function 𝑓 are unavailable for (5), various techniques such as finite
ifferences can be used. Evaluating the polynomial in (2) and its derivatives at the eight corners of the cube then leads to a sparse
inear system for the unknown coefficients

𝐵𝜶 = 𝐛, (6)

here 𝐵 is a 64 × 64 invertible matrix with integer elements which can be solved explicitly as

𝜶 = 𝐵−1𝐛. (7)

he matrix 𝐵−1 is sparse and is computed exactly without numerical error [28]. It has exactly 1000 non-zero elements and a
ondition number 𝜅2(𝐵−1) = 1.345 × 104. In Section 3 we show that in the treecode algorithm, only multiplication by the transpose
f the inverse (𝐵−1)𝑇 is needed, and as this matrix is sparse, the multiplication can be done in-line.

The representation (2) has several advantages as an interpolant. It was shown to be the minimum order necessary to maintain
lobal 1 continuity in the approximated function [28]. Furthermore, the derivatives of the function can be computed analytically,
n contrast with three one-dimensional cubic interpolants, where the derivatives are not easily accessible and finite differences or
ther methods are needed to recover the derivatives.

We can define a vector 𝝁 where

𝜇1+𝑖+4𝑗+16𝑘 = 𝑥𝑖𝑦𝑗𝑧𝑘, 𝑖, 𝑗, 𝑘 = 0, 1, 2, 3, (8)

nd use the definition of 𝜶 in Eq. (4) to write Eq. (2) as an inner-product

𝑓 (𝑥, 𝑦, 𝑧) = 𝜶𝑇𝝁. (9)

Here and in the rest of the paper, a superscript 𝑇 will denote a transpose.

.1. Rectangular meshes of arbitrary size

The representation in (2) can be modified for a rectangular mesh element of arbitrary size and location by shifting and scaling
ach variable accordingly,

𝑓 (𝑥, 𝑦, 𝑧) =
3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘

(𝑥 − 𝑥0
𝛥𝑥

)𝑖
(

𝑦 − 𝑦0
𝛥𝑦

)𝑗
( 𝑧 − 𝑧0

𝛥𝑧

)𝑘
, (10)

here 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 are the lengths of the element in the three dimensions, and (𝑥0, 𝑦0, 𝑧0) is the lower left corner of the element. Note
hat in this case, the derivatives in (5) must be appropriately scaled. For example, differentiating (10) in the 𝑥 variable, we get,

𝜕𝑓
𝜕𝑥

(𝑥, 𝑦, 𝑧) =
3
∑

𝑖=1,𝑗,𝑘=0

𝑖
𝛥𝑥
𝑎𝑖𝑗𝑘

(𝑥 − 𝑥0
𝛥𝑥

)𝑖−1
(

𝑦 − 𝑦0
𝛥𝑦

)𝑗
( 𝑧 − 𝑧0

𝛥𝑧

)𝑘
. (11)

Evaluating the function in (10) and the three derivatives at the lower left corner 𝐱0, we get

𝑓 |𝐱 = 𝑎000,
𝜕𝑓

|

| =
𝑎100 ,

𝜕𝑓
|

| =
𝑎010 ,

𝜕𝑓
|

| =
𝑎001 . (12)
0 𝜕𝑥 |𝐱0 𝛥𝑥 𝜕𝑦 |𝐱0 𝛥𝑦 𝜕𝑧 |𝐱0 𝛥𝑧

3
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Fig. 2. Particle-cluster interaction. The target particle is at position 𝐱𝑚 and the source particles are at positions 𝐲𝑛 in cluster 𝐶. Cluster C has center 𝐲𝑐 and
adius 𝑟. The particle-cluster distance is 𝑅 = |𝐱𝑚 − 𝐲𝑐 |.

onsequently, the evaluation of coefficients still follows (7) but the right hand side in (5) is evaluated as

𝑆∗ ∶
{

𝑓, 𝛥𝑥
𝜕𝑓
𝜕𝑥
, 𝛥𝑦

𝜕𝑓
𝜕𝑦
, 𝛥𝑧

𝜕𝑓
𝜕𝑧
, 𝛥𝑥𝛥𝑦

𝜕2𝑓
𝜕𝑥𝜕𝑦

, 𝛥𝑥𝛥𝑧
𝜕𝑓 2

𝜕𝑥𝜕𝑧
, 𝛥𝑦𝛥𝑧

𝜕𝑓 2

𝜕𝑦𝜕𝑧
, 𝛥𝑥𝛥𝑦𝛥𝑧

𝜕3𝑓
𝜕𝑥𝜕𝑦𝜕𝑧

}

, (13)

hile the 𝐵 matrix remains the same.

. The particle-cluster treecode

We now present the main components of a treecode algorithm based on the tricubic interpolation. First, all source particles are
ivided into a hierarchy of clusters, and a target particle interacts with clusters of source particles, rather than individual sources,
s described below.

.1. A particle-cluster interaction

Consider a target particle 𝐱𝑚 =
(

𝑥𝑚, 𝑦𝑚, 𝑧𝑚
)

interacting with source particles 𝐲𝑛 =
(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

in a source cluster 𝐶, as shown in
ig. 2. The cluster has a radius 𝑟, and the particle-cluster distance is 𝑅 = |𝐱𝑚 − 𝐲𝑐 |, where 𝐲𝑐 is the cluster center.

The component of the sum (1) for this interaction is written as

𝜙(𝐱𝑚, 𝐶) =
∑

𝐲𝑛∈𝐶
(𝐱𝑚, 𝐲𝑛)𝑓𝑛. (14)

f the particle and the cluster are far enough apart (that is 𝑟
𝑅 ≤ 𝜃 [7], where 0 ≤ 𝜃 < 1), the sum in (14) is approximated in the

following way. First, the cluster is shifted and scaled to the unit cube [0, 1]3,

𝑥 =
𝑥𝑛 − 𝑥min

𝛥𝑥
, 𝑦 =

𝑦𝑛 − 𝑦min
𝛥𝑦

, 𝑧 =
𝑧𝑛 − 𝑧min

𝛥𝑧
, (15)

where 𝐲min = (𝑥min, 𝑦min, 𝑧min) are the minimum 𝑥, 𝑦, 𝑧 coordinates of the cluster 𝐶, and 𝛥𝐲 = (𝛥𝑥, 𝛥𝑦, 𝛥𝑧) is the size of the cluster box.
The target point is shifted as well 𝐱𝑚 → 𝐱𝑚 − 𝐲min. Then the kernel function (𝐱𝑚, 𝐲) is interpolated in the second (source) variable
using the tricubic formula (2),

𝜙(𝐱𝑚, 𝐶) =
∑

𝐲𝑛∈𝐶
(𝐱𝑚, 𝐲𝑛)𝑓𝑛 ≈

∑

𝐲𝑛∈𝐶

3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘𝑥

𝑖𝑦𝑗𝑧𝑘𝑓𝑛. (16)

Since the tricubic coefficients 𝑎𝑖𝑗𝑘 do not depend on the individual source particles in the cluster, we switch the order of summation
in (16), and use the definition in (8), to obtain the far-field approximation,

𝜙(𝐱𝑚, 𝐶) ≈
3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘

∑

𝐲𝑛∈𝐶
𝑥𝑖𝑦𝑗𝑧𝑘𝑓𝑛,

= 𝜶𝑇𝑚𝝁
𝐶 , (17)

where

𝜇𝐶1+𝑖+4𝑗+16𝑘 =
∑

𝜇1+𝑖+4𝑗+16𝑘𝑓𝑛 (18)

𝐲𝑛∈𝐶

4
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are the monomials of the cluster 𝐶. The significance of approximation (17) is first, the coefficients 𝜶𝑚 depend only on the target
article 𝐱𝑚 and the cluster corners, and second, the cluster monomials 𝝁𝐶 are independent of the target particle. We can achieve

further time saving by using (7) to rewrite (17) as

𝜙(𝐱𝑚, 𝐶) ≈ 𝜶𝑇𝑚𝝁
𝐶 = (𝐵−1𝐛𝑚)𝑇𝝁𝐶 = 𝐛𝑇𝑚(𝐵

−1)𝑇𝝁𝐶 = 𝐛𝑇𝑚𝐌
𝐶 , (19)

where

𝐌𝐶 = (𝐵−1)𝑇𝝁𝐶 , (20)

are the modified monomials of the cluster 𝐶 which are also independent of the target particle 𝐱𝑚. These modified monomials are
therefore precomputed and stored for each cluster using (20), since the 64 × 64 matrix (𝐵−1)𝑇 is known explicitly. Furthermore, the

atrix multiplication in (20) can be done in-line since the matrix is sparse. These monomials 𝐌𝐶 can then be reused for different
argets. Eq. (19) defines the far-field tricubic approximation for the potential at the target position 𝐱𝑚 due to all the source particles
𝑛 in cluster 𝐶. In summary, the particle-cluster approximation (19) is performed in two steps: first, the 64 elements of 𝐛𝑚 are
omputed using (5), scaling the derivatives as in (13), and second, the dot product of 𝐛𝑚 and 𝐌𝐶 is computed in (19).

The cost of evaluating the particle-cluster interaction using (19) can be estimated as follows. The first step of computing the vector
𝑚 is roughly 64 function evaluations (the kernel and its derivatives at 8 corner points), and the exact time can vary depending
n the complexity of the kernel function and whether finite differences are used for the derivatives. Once this step is completed,
ssembling the velocity through the dot product in (19) is another 64 multiplications. The cost of direct summation in (14) is 𝑂(𝑁𝑐 ),
here 𝑁𝑐 is the number of particles in the cluster. The approximation process is more efficient than direct summation since the
umber of particles in each cluster 𝑁𝑐 ≫ 64. Summing over all clusters brings the total estimate to 𝑂(64 log(𝑁)), or simply 𝑂(log(𝑁)),
or each target particle, and the overall algorithm for 𝑁 targets to 𝑂(𝑁 log(𝑁)), consistent with other treecodes.

.2. Approximating the electric field

The use of tricubic interpolation to obtain the far-field approximation (19) for the potential in (14) makes it a simple task to
ompute derivatives (or the electric field) as follows. The electric field at target position 𝐱𝑚 due to the source cluster 𝐶 is given by

𝐄𝑚 = −∇𝐱𝑚𝜙(𝐱𝑚, 𝐶) = ∇𝐲𝑛𝜙(𝐱𝑚, 𝐶), (21)

ince the kernel  is a function of |𝐱 − 𝐲|. From the tricubic approximation of the potential given in (19), the field is approximated
s

𝐄𝑚 = ∇𝐲𝑛𝜙(𝐱𝑚, 𝐶) ≈ ∇𝐲𝑛𝐛
𝑇
𝑚𝐌

𝐶 = 𝐛𝑇𝑚∇𝐲𝑛𝐌
𝐶 , (22)

ince 𝐛𝑚 is independent of 𝐲𝑛. The derivative of the modified moments with respect to 𝑥𝑛, the first coordinate of the source variable
𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), is

𝜕𝐌𝐶

𝜕𝑥𝑛
= 𝜕
𝜕𝑥𝑛

(

(𝐵−1)𝑇𝝁𝐶
)

= (𝐵−1)𝑇 𝜕
𝜕𝑥𝑛

(

𝝁𝐶
)

. (23)

he derivative of 𝝁𝐶 is computed element-wise as

𝜕
𝜕𝑥𝑛

(

𝜇𝐶1+𝑖+4𝑗+16𝑘
)

= 𝜕
𝜕𝑥𝑛

(

∑

𝐲𝑛∈𝐶
𝑥𝑖𝑦𝑗𝑧𝑘𝑓𝑛

)

=
∑

𝐲𝑛∈𝐶
𝑦𝑗𝑧𝑘𝑓𝑛

𝜕
𝜕𝑥𝑛

(𝑥𝑛 − 𝑥min
𝛥𝑥

)𝑖
,

= 𝑖
𝛥𝑥

∑

𝐲𝑛∈𝐶
𝑥𝑖−1𝑦𝑗𝑧𝑘𝑓𝑛,

= 𝑖
𝛥𝑥
𝜇𝐶1+(𝑖−1)+4𝑗+16𝑘

= 𝜇𝐶,𝑖. (24)

Then from (23),

𝜕𝐌𝐶

𝜕𝑥𝑛
= (𝐵−1)𝑇 𝜕

𝜕𝑥𝑛

(

𝝁𝐶
)

= (𝐵−1)𝑇𝝁𝐶,𝑖 = 𝐌𝐶,𝑖. (25)

Similarly,
𝜕
𝜕𝑦𝑛

(

𝜇𝐶1+𝑖+4𝑗+16𝑘
)

=
𝑗
𝛥𝑦
𝜇𝐶1+𝑖+4(𝑗−1)+16𝑘 = 𝜇𝐶,𝑗 , (26)

and
𝜕
𝜕𝑧𝑛

(

𝜇𝐶1+𝑖+4𝑗+16𝑘
)

= 𝑘
𝛥𝑧
𝜇𝐶1+𝑖+4𝑗+16(𝑘−1) = 𝜇𝐶,𝑘. (27)

Hence,

𝜕𝐌𝐶
= (𝐵−1)𝑇𝝁𝐶,𝑗 = 𝐌𝐶,𝑗 , (28)
𝜕𝑦𝑛

5
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T

d

3

c
a
b

A

a

and
𝜕𝐌𝐶

𝜕𝑧𝑛
= (𝐵−1)𝑇𝝁𝐶,𝑘 = 𝐌𝐶,𝑘. (29)

hen from (22),

𝐄𝑚 ≈ 𝐛𝑇𝑚∇𝐲𝑛𝐌
𝐶 ,

= 𝐛𝑇𝑚

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐌𝐶

𝜕𝑥𝑛

𝜕𝐌𝐶

𝜕𝑦𝑛

𝜕𝐌𝐶

𝜕𝑧𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐛𝑇𝑚
⎡

⎢

⎢

⎣

𝐌𝐶,𝑖

𝐌𝐶,𝑗

𝐌𝐶,𝑘

⎤

⎥

⎥

⎦

. (30)

The monomials 𝐌𝐶,𝑖, 𝐌𝐶,𝑗 and 𝐌𝐶,𝑘 are precomputed for each cluster in the same routine that precomputes 𝐌𝐶 and reused for
ifferent targets.

.3. Error analysis

Here we estimate the error in using tricubic interpolation (16) to evaluate the sum (14) for a fixed target particle 𝐱𝑚 and a source
luster 𝐶. Without loss of generality, we assume the cluster 𝐶 contains the source particles 𝐱𝑛, 𝑛 = 1,… , 𝑁 . Let (𝑥, 𝑦, 𝑧) be the shifted
nd scaled coordinates of the source 𝐲𝑛, defined in (15). Since |𝑥| ≤ 1, |𝑦| ≤ 1, |𝑧| ≤ 1, we define the largest error as the difference
etween approximations using the fourth-degree interpolant and the tricubic. We write the error as follows:

(𝐱𝑚, 𝐶) =
𝑁
∑

𝑛=1
𝑓𝑛

[ 4
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘𝑥

𝑖𝑦𝑗𝑧𝑘 −
3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘𝑥

𝑖𝑦𝑗𝑧𝑘
]

. (31)

fter cancellations, (31) becomes

(𝐱𝑚, 𝐶) =
𝑁
∑

𝑛=1
𝑓𝑛

[ 4
∑

𝑖=0

4
∑

𝑘=0
𝑎𝑖4𝑘𝑥

𝑖𝑦4𝑧𝑘 +
3
∑

𝑗=0

4
∑

𝑘=0
𝑎4𝑗𝑘𝑥

4𝑦𝑗𝑧𝑘 +
3
∑

𝑖=0

3
∑

𝑗=0
𝑎𝑖𝑗4𝑥

𝑖𝑦𝑗𝑧4
]

. (32)

Let 𝐹 = max
1≤𝑛≤𝑁

|𝑓𝑛| and 𝐴 = max
0≤𝑖,𝑗,𝑘≤4

|𝑎𝑖𝑗𝑘|. Then

|(𝐱𝑚, 𝐶)| ≤ 𝐴𝐹
𝑁
∑

𝑛=1

[ 4
∑

𝑖=0

4
∑

𝑘=0
|𝑥𝑖𝑦4𝑧𝑘| +

3
∑

𝑗=0

4
∑

𝑘=0
|𝑥4𝑦𝑗𝑧𝑘| +

3
∑

𝑖=0

3
∑

𝑗=0
|𝑥𝑖𝑦𝑗𝑧4|

]

. (33)

Since |𝑥| ≤ 1, |𝑦| ≤ 1, |𝑧| ≤ 1, and letting 𝛽 = 𝐴𝐹 , we get

|(𝐱𝑚, 𝐶)| ≤ 𝛽
𝑁
∑

𝑛=1

[ 4
∑

𝑖=0

4
∑

𝑘=0
|𝑦4| +

3
∑

𝑗=0

4
∑

𝑘=0
|𝑥4| +

3
∑

𝑖=0

3
∑

𝑗=0
|𝑧4|

]

= 𝛽
𝑁
∑

𝑛=1

[

25|𝑦4| + 20|𝑥4| + 16|𝑧4|
]

= 𝛽
𝑁
∑

𝑛=1

[

25
(

𝑦𝑛 − 𝑦min
𝛥𝑦

)4
+ 20

(𝑥𝑛 − 𝑥min
𝛥𝑥

)4
+ 16

( 𝑧𝑛 − 𝑧min
𝛥𝑧

)4
]

≤ 𝛽
𝑁
∑

𝑛=1

[

25
( 𝑙
𝛥𝑤

)4
+ 20

( 𝑙
𝛥𝑤

)4
+ 16

( 𝑙
𝛥𝑤

)4]

= 61𝛽𝑁 𝑙4

(𝛥𝑤)4
, (34)

where 𝑙 = max
𝑛

{|𝑥𝑛 − 𝑥min|, |𝑦𝑛 − 𝑦min|, |𝑧𝑛 − 𝑧min|} ≤ max{𝛥𝑥, 𝛥𝑦, 𝛥𝑧} and 𝛥𝑤 = min{𝛥𝑥, 𝛥𝑦, 𝛥𝑧}. Without loss of generality, let

𝛥𝑥 = max{𝛥𝑥, 𝛥𝑦, 𝛥𝑧}. Then, for a rectangular parallelepiped cluster, the radius 𝑟 = 𝛥𝑥
2

√

1 +
(

𝛥𝑦
𝛥𝑥

)2
+
(

𝛥𝑧
𝛥𝑥

)2
and (34) can be written

s

|(𝐱𝑚, 𝐶)| ≤
61𝛽𝑁
(𝛥𝑤)4

(𝛥𝑥)4 =
976𝛽𝑁
(𝛥𝑤)4

𝑟4
(
√

1 +
(

𝛥𝑦
𝛥𝑥

)2
+
(

𝛥𝑧
𝛥𝑥

)2
)4

,

≤ 976𝛽𝑁𝑅4 ( 𝑟 )4
= 𝛾𝜌

( 𝑟 )4
, (35)
(𝛥𝑤)4 𝑅 𝑅

6
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c
b

𝜙

o

p
c

Fig. 3. Log–log plot of the error  vs. 𝜃 for constant 𝜌.

Fig. 4. Log–log plot of the error  vs. 𝜌 for constant 𝜃.

where 𝛾 = 976𝛽𝑅4

𝛥𝑤 and 𝜌 = 𝑁
(𝛥𝑤)3 is proportional to the particle density of the cluster. For a cubic cluster, 𝜌 is exactly the particle

density. For each target particle, the treecode algorithm cycles through the clusters in the tree recursively, and evaluates a particle-
cluster interaction using the approximation in (19) only when the particle and the cluster are well-separated, that is, the acceptance
criterion, typically called the MAC, is satisfied:

𝑟
𝑅

≤ 𝜃, (36)

where 𝑟 is the cluster radius, 𝑅 is the particle-cluster distance, and 𝜃 is a user-specified parameter. If the MAC is not satisfied, the
hildren of the cluster are checked, and if the cluster is a leaf (no children), then the particle-cluster interaction is computed directly
y (14). Thus, the error for the tricubic approximation is

|(𝐱𝑚, 𝐶)| ≤ 𝛾𝜌 𝜃4. (37)

To provide numerical evidence for the 𝜃 dependence of the error given in (37), we compute the error in the Coulomb potential
(𝐱, 𝐲) = 1

|𝐱−𝐲| for a particle-cluster interaction with fixed particle density 𝜌. The source cluster is a unit cube centered at (0, 0, 0)
containing 1000 uniformly distributed points. The target particle is located at 𝐱𝑚 = (2.0 + 𝑑𝑥, 0, 0) with 𝑑𝑥 = 0 ∶ 0.1 ∶ 8. The MAC
parameter 𝜃 = 𝑟

𝑅 =
√

3
2(2+𝑑𝑥) . A plot of the error vs. 𝜃 is shown in Fig. 3. The plot provides graphical evidence of the 𝜃4 dependence

f the error.
Fig. 4 is an attempt to provide evidence for the dependence of the error on the particle density. The error is again from a

article-cluster interaction with the Coulomb potential. In this study, the MAC parameter, 𝜃, is kept constant. The cluster is the unit
ube centered at (0, 0, 0) and the target particle is fixed at (2, 0, 0). The source points 𝑁 ∈ {64, 125, 512, 1000, 4096}. The points in this

case are uniform grid points in the cube. The plot shows an increase in the error with the density. We note that the coefficients 𝑎
𝑖𝑗𝑘

7
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{

Fig. 5. Cluster-particle interaction. The source particle is at position 𝐲𝑛 and the target particles are at positions 𝐱𝑚 in cluster 𝐶. Cluster C has center 𝐱𝑐 and
radius 𝑟. The particle-cluster distance is 𝑅 = |𝐲𝑛 − 𝐱𝑐 |.

have an effect on the error as well. They are kernel dependent and are related to the rate of decay of the kernel. Unlike the MAC
parameter and the particle density, our understanding of the effect of the coefficients is mainly heuristic. In Section 5, we provide
numerical results showing the dependence of the error of the full treecode on the MAC parameter and the particle density.

3.4. The particle-cluster algorithm

With the particle-cluster approximation established, our treecode algorithm is similar to other treecodes [20,26]. For complete-
ness, we give an overview of the algorithm with the pseudocode presented in Algorithm 1. First, the particle data (coordinates 𝐱
and weights 𝑓 where weights are either one or three-dimensional) are read from a file. Then, the particles are divided recursively
into clusters to generate a tree structure. The root cluster is the smallest rectangular box that encloses all particles. The root is
bisected in each coordinate direction to create 8 child clusters. The process is repeated for each child cluster, recursively until a
cluster has fewer than 𝑁0 particles, where 𝑁0 is a user-specified leaf-size parameter. For each cluster, the modified monomials 𝐌𝐶 ,
𝐌𝐶,𝑖, 𝐌𝐶,𝑗 , 𝐌𝐶,𝑘, each of length 64, are computed using Eqs. (20), (25), (28) and (29). This concludes the precomputation needed
at the start of the algorithm. The algorithm then loops through the target particles. For each target particle, the interaction with all
the source particles is done recursively through the clusters. For a given particle-cluster interaction, if the MAC (36) is satisfied, we
compute the approximations in (19) and (30), where 𝐛𝑚 is first evaluated and 𝐌𝐶 , 𝐌𝐶,𝑖, 𝐌𝐶,𝑗 and 𝐌𝐶,𝑘 are simply looked up from
the precomputation. If the MAC is not met, and the cluster is a leaf, the interaction is evaluated directly using (14). Otherwise, all
children of the cluster are checked.

Algorithm 1 tricubic treecode: particle-cluster
1: input: particle coordinates 𝐱𝑚, 𝑚 = 1,… , 𝑁 , 𝑓𝑛, 𝑛 = 1,… , 𝑁 , parameters 𝜃, 𝑁0
2: Set

{

𝐲𝑛
}𝑁
𝑛=1 =

{

𝐱𝑚
}𝑀
𝑚=1 = 𝑁

3: output: potential 𝜙𝑚, electric field 𝐄𝑚, 𝑚 = 1,… , 𝑁
4: program main
5: build tree of source particles 𝐲𝑛
6: precompute and store 𝐌𝐶 , 𝐌𝐶,𝑖, 𝐌𝐶,𝑗 , 𝐌𝐶,𝑘 using (20), (25), (28) and (29), for each cluster
7: for 𝑚 = 1,… , 𝑁 , compute_potential(𝐱𝑚, root), end for
8: end program
9: subroutine compute_potential(𝐱, 𝐶)

10: if MAC (36) is satisfied
11: compute 𝐛𝑚 using (5)
12: compute particle-cluster interaction by approximations (19) and (30)
13: else
14: if 𝐶 is a leaf, compute particle-cluster interaction by direct sum (14)
15: else
16: for each child 𝐶 ′ of 𝐶, compute_potential(𝐱, 𝐶 ′), end for
17: end subroutine

4. The cluster-particle treecode

Here we describe an alternative treecode method for computing the sum in (1), based on partitioning the set of target particles
𝐱𝑚} into an octree and applying a near-field approximation [29]. Fig. 5 shows a cluster-particle interaction between targets 𝐱𝑚 in

a target cluster 𝐶 and a source particle 𝐲𝑛. The target cluster and the source particle are well-separated if 𝑟∕𝑅 ≤ 𝜃, in which case
the algorithm approximates the potential and electric field at the targets by a near-field tricubic interpolation.
8
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s
i

Suppose for the cluster 𝐶, {𝐲𝑠} is the ‘‘interaction list’’, that is, the set of source particles well-separated from 𝐶. We shift these
particles as before 𝐲𝑠 → 𝐲𝑠 − 𝐱min, where 𝐱min = (𝑥min, 𝑦min, 𝑧min) are the minimum 𝑥, 𝑦, 𝑧 coordinates of the cluster 𝐶. The cluster is
hifted and scaled to the unit cube similar to (15). Then the kernel is interpolated in the target variable, and the cluster-particle
nteraction can be evaluated as

𝜙(𝐱𝑚, 𝐲𝑠) =
∑

{𝐲𝑠}
(𝐱𝑚, 𝐲𝑠)𝑓𝑠,

≈
∑

{𝐲𝑠}

3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘

(𝑥𝑚 − 𝑥min
𝛥𝑥

)𝑖
(

𝑦𝑚 − 𝑦min
𝛥𝑦

)𝑗
( 𝑧𝑚 − 𝑧min

𝛥𝑧

)𝑘
𝑓𝑠,

=
∑

{𝐲𝑠}

3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘 𝑥

𝑖𝑦𝑗𝑧𝑘𝑓𝑠. (38)

The tricubic coefficients 𝑎𝑖𝑗𝑘 depend on the corners of the target cluster and the source particles in the interaction list, but do not
depend on the individual particles in the target cluster 𝐶. As such, we can re-arrange the summation and use Eqs. (4) and (8) to
rewrite the approximation as,

𝜙(𝐱𝑚, 𝐲𝑠) ≈
3
∑

𝑖,𝑗,𝑘=0
𝑥𝑖𝑦𝑗𝑧𝑘

∑

{𝐲𝑠}
𝑎𝑖𝑗𝑘 𝑓𝑠 =

3
∑

𝑖,𝑗,𝑘=0
𝑥𝑖𝑦𝑗𝑧𝑘

∑

{𝐲𝑠}
𝛼𝑐,1+𝑖+4𝑗+16𝑘

= 𝜶𝑇𝑐 𝝁𝑚, (39)

where from Eq. (7),

𝛼𝑐,1+𝑖+4𝑗+16𝑘 =
∑

{𝐲𝑠}
𝑎𝑖𝑗𝑘 𝑓𝑠 =

∑

{𝐲𝑠}
(𝐵−1𝐛𝑠)𝑖𝑗𝑘 𝑓𝑠 =

(

𝐵−1
∑

{𝐲𝑠}
𝐛𝑠 𝑓𝑠

)

𝑖𝑗𝑘
, (40)

and

𝜶𝑐 = 𝐵−1
∑

{𝐲𝑠}
𝐛𝑠𝑓𝑠, (41)

are the modified tricubic coefficients of the cluster 𝐶. Eq. (39) defines the near-field tricubic approximation for the potential at the
target position 𝐱𝑚 ∈ 𝐶 due to the source particles in the interaction list of 𝐶, {𝐲𝑠}.

We see that the particle-cluster approximation in (17) and the cluster-particle approximation in (39) are both of the polynomial
form given in (9). For the particle-cluster approximation, the coefficient vector 𝜶𝑚 and the monomial vector 𝝁𝐶 depend on the
target and source particles respectively. This is reversed in cluster-particle where the coefficient vector 𝜶𝑐 depends on the sources
and the monomial vector 𝝁𝑚 depends on the targets.

4.1. Approximating the electric field

Computing the near-field approximation for the derivatives of the potential is straightforward. From (38), we note that

𝜕
𝜕𝑥𝑚

𝜙(𝐱𝑚, 𝐶) ≈
3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘 𝑦

𝑗𝑧𝑘 𝜕𝑥
𝑖

𝜕𝑥𝑚
= 1
𝛥𝑥

3
∑

𝑖,𝑗,𝑘=0
𝑎𝑖𝑗𝑘 𝑖 𝑥

𝑖−1𝑦𝑗𝑧𝑘, (42)

= 1
𝛥𝑥

𝜶𝑇𝑐 𝝁𝑚,𝑖, (43)

where

𝝁𝑚,𝑖 =
3
∑

𝑖,𝑗,𝑘=0
𝑖 𝑥𝑖−1𝑦𝑗𝑧𝑘. (44)

Similarly
𝜕
𝜕𝑦𝑚

𝜙(𝐱𝑚, 𝐶) ≈
1
𝛥𝑦

𝜶𝑇𝑐 𝝁𝑚,𝑗 , (45)

𝜕
𝜕𝑧𝑚

𝜙(𝐱𝑚, 𝐶) ≈
1
𝛥𝑧

𝜶𝑇𝑐 𝝁𝑚,𝑘, (46)

with

𝝁𝑚,𝑗 =
3
∑

𝑖,𝑗,𝑘=0
𝑗 𝑥𝑖𝑦𝑗−1𝑧𝑘, (47)

and

𝝁𝑚,𝑘 =
3
∑

𝑘 𝑥𝑖𝑦𝑗𝑧𝑘−1. (48)

𝑖,𝑗,𝑘=0

9
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a
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a
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b

5

f
[
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The electric field at target position 𝐱𝑚 in cluster 𝐶 due to the source particles in the interaction list {𝐲𝑠} is given by

𝐄𝑚 = −∇𝐱𝑚𝜙(𝐱𝑚, 𝐲𝑠) ≈ −𝜶𝑇𝑐

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝝁𝑚,𝑖
𝛥𝑥

𝝁𝑚,𝑗
𝛥𝑦

𝝁𝑚,𝑘
𝛥𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (49)

The cluster-particle treecode algorithm is described in Algorithm 2. First, the target particles are hierarchically reordered into
tree following the same procedure described in the particle-cluster algorithm. The rest of the algorithm is done in two stages.

tage 1 loops through the source particles and performs the interaction of each source particle 𝐲𝑛 with the clusters in the tree. If
a source particle 𝐲𝑛 and a cluster are well-separated, that means that 𝐲𝑛 is in the interaction list of that particular cluster and the
lgorithm updates the near-field modified tricubic coefficients in (41) for the cluster. Otherwise the source particle interacts with
he children of the cluster unless the cluster is a leaf in which case the cluster-particle interaction is computed by direct sum. Stage 2
ompletes the evaluation of the near-field approximation by descending the tree and evaluating (39) and (49) for all target particles
hat interacted with source particles by approximation in stage 1.

The tree of targets has 𝑂(log𝑁) levels. In both stage 1 and stage 2, the code descends through the tree. In stage 1, the code
oops through the log𝑁 levels for each of the 𝑁 source particles to evaluate (41), thus the operation count is 𝑂(𝑁 log𝑁). In stage

the code evaluates (39) and (49) for each of the 𝑁 target sites at each of the log𝑁 levels resulting in a cost of 𝑂(𝑁 log𝑁). Thus
he cluster-particle treecode also has an overall cost of 𝑂(𝑁 log𝑁).

Algorithm 2 tricubic treecode: cluster-particle
1: input: particle coordinates 𝐱𝑚, 𝑚 = 1,… , 𝑁 , 𝑓𝑛, 𝑛 = 1,… , 𝑁 , parameters 𝜃, 𝑁0
2: Set

{

𝐲𝑛
}𝑁
𝑛=1 =

{

𝐱𝑚
}𝑁
𝑚=1

3: output: potential 𝜙𝑚, electric field 𝐄𝑚, 𝑚 = 1,… , 𝑁
4: program main
5: build tree of target particles 𝐱𝑚
6: for 𝑛 = 1,… , 𝑁 , compute_cp_stage1(root, 𝐲𝑛), end for
7: compute_cp_stage2(root)
8: end program
9: subroutine compute_cp_stage1(𝐶, 𝐲)

10: if MAC (36) is satisfied
11: update modified tricubic coefficients 𝜶𝑐 using (41)
12: else if 𝐶 is a leaf
13: compute cluster-particle interaction by direct summation
14: else
15: for each child 𝐶 ′ of 𝐶, compute_cp_stage1(𝐶 ′, 𝐲), end for
16: end subroutine
17: subroutine compute_cp_stage2(𝐶)
18: if 𝐶 interacted with a source particle by tricubic approximation in stage 1
19: for each target 𝐱𝑚 in 𝐶, compute the full approximation in (39) and (49), end for
20: for each child 𝐶 ′ of 𝐶, compute_cp_stage2(𝐶 ′), end for
21: end subroutine

5. Numerical results

5.1. Implementation details

The algorithms are written in double precision C++ using the Clang compiler frontend with the -O2 optimization. The source
ode is available online in a Github repository [30]. The tests presented here were performed on a Dell PowerEdge R940xa Linux
ox with 2.1 GHz Intel Xeon Gold processors.

.2. Efficiency of the treecode algorithms

This section presents results for the particle-cluster and cluster-particle treecode approximations of the potential and electric
ield for systems of size 𝑁 ∈ {104, 8 × 104, 64 × 104}. where the particles are randomly distributed in a cube of dimension
−5, 5] × [−5, 5] × [0, 10] and the weights 𝑓𝑛 ∈ (−1, 1). The maximum number of particles in a leaf of the tree is set to 𝑁0 = 1000 and
he MAC parameter 𝜃 = 0.3 ∶ 0.1 ∶ 0.8.
10
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E
E

Fig. 6. Accuracy and CPU time in N for the three kernels. N: number of particles, 𝜃: MAC parameter. Fixed length of cube, 𝐿 = 10.

Let 𝑟 = |𝐱 − 𝐲| and 𝜅 = 1. We test the two treecode algorithms on three kernels common in physical applications; the Coulomb
kernel

(𝐱, 𝐲) = 1
𝑟
, (50)

the screened Coulomb kernel

(𝐱, 𝐲) = e−𝜅𝑟
𝑟
, (51)

and the kernel of the real-space component of the Ewald sum

(𝐱, 𝐲) = erfc(𝜅𝑟)
𝑟

. (52)

For each kernel, we approximate 𝜙 in (1) and the electric field ∇𝜙 using Eqs. (19) and (30) for the particle-cluster treecode and
qs. (39) and (49) for the cluster-particle treecode. We compute the relative error, in 𝓁2-norm, in the approximation of the potential,
rror(𝜙), given by

Error(𝜙) =
(

𝑁
∑

𝑚=1

|

|

|

𝜙𝑑 (𝐱𝑚) − 𝜙𝑡(𝐱𝑚)
|

|

|

2/ 𝑁
∑

𝑚=1

|

|

|

𝜙𝑑 (𝐱𝑚)
|

|

|

2)1∕2
, (53)

as well as in the approximation of the electric field, Error(∇𝜙), defined as

Error(∇𝜙) =
(

𝑁
∑

𝑚=1

|

|

|

∇𝜙𝑑 (𝐱𝑚) − ∇𝜙𝑡(𝐱𝑚)
|

|

|

2/ 𝑁
∑

𝑚=1

|

|

|

∇𝜙𝑑 (𝐱𝑚)
|

|

|

2)1∕2
, (54)

where 𝜙𝑑 ,∇𝜙𝑑 are the exact potential and electric field computed by direct summation, 𝜙𝑡,∇𝜙𝑡 are the treecode approximations.
Figs. 6 and 7 show the results of the treecode approximations for a system with varying density and constant density respectively.
In Fig. 6, the particles are randomly distributed in a cube of dimension [−5, 5] × [−5, 5] × [0, 10]. With 𝑁 ∈ {104, 8× 104, 64× 104},

the particle density 𝜌 ∈ {10, 80, 640}. The top row is a plot of the error in the potential against 𝑁 . The middle row is a plot of the
error in the electric field against 𝑁 and the bottom row is a plot of the CPU time against the 𝑁 . The plots are for both particle-cluster
and cluster-particle and for all three kernels. Both algorithms have the same qualitative behavior for all three kernels. For a fixed
MAC parameter 𝜃, Eqs. (35) and (37) predict that the error increases with 𝜌 or with 𝑁 for a fixed length 𝐿. We see this increase
in error as 𝑁 increases for all the kernels for both algorithms. As expected, for fixed 𝑁 , the error decreases with decreasing 𝜃. The
plot of CPU time against 𝑁 shows the 𝑂(𝑁 log𝑁) behavior of both algorithms compared with the 𝑂(𝑁2) behavior of direct sum.
11
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Fig. 7. Accuracy and CPU time vs. N for the three kernels. N: number of particles, 𝜃: MAC parameter. Fixed particle density, 𝜌 = 10.

For Fig. 7, the particles are randomly distributed in the cube [−𝐿,𝐿]3. With 𝑁 ∈ {104, 8×104, 64×104}, the length 𝐿 ∈ {10, 20, 40}
in order to maintain a constant density of 𝜌 = 10. As expected from Eqs. (35) and (37), the error in the potential (top row) and the
lectric field (middle row) are near constant with 𝑁 with constant density as expected. Again, both algorithms exhibit very similar
ehavior for all our test parameters.

.3. Molecular dynamics simulation of liquid Argon (Ar)

To further investigate the accuracy of the algorithms, we performed a molecular dynamics (MD) simulation of liquid Argon. The
nteractions of Argon atoms are governed by the Lennard-Jones potential energy

𝜓(𝑟) = 4𝜖
[(𝜎
𝑟

)12
−
(𝜎
𝑟

)6]
. (55)

e implemented the particle-cluster treecode in the MD simulation software package DL_POLY Classic [31] to approximate the
ennard-Jones potential energy and the forces −∇𝜓(𝑟). The Lennard-Jones potential well-depth parameter 𝜖 = 0.9661 kJ/mol and

the distance at which there is zero potential energy 𝜎 = 3.405 Å. We simulated a system of 𝑁 = 100 Argon atoms in a cubic box of
length 17.4 Å, with periodic boundary conditions, at 85 ◦K and with timestep 1 fs. The system was equilibrated for 5000 MD steps
using an Evans thermostat [31] after which the thermostat was turned off and statistics were taken over 20 000 additional MD steps.

We run four different simulations. In one simulation, the atomic interactions were computed using direct summation with no
cutoffs, or a treecode with 𝜃 ≈ 0. In the other three simulations, the atomic interactions were computed with the particle-cluster
treecode with 𝜃 ∈ {0.3, 0.5, 0.7} and the maximum number of particles in a leaf 𝑁0 = 4. In all the simulations, we computed the
radial distributions functions 𝑔(𝑟) [32] every 10 steps averaged over all the particles and over 2000 steps. We also computed the
velocity 𝐶𝑉 𝑉 (𝑡) and force-force 𝐶𝐹𝐹 (𝑡) autocorrelation functions [32] with velocities and forces which were stored at each 5th step.
The correlation functions were also averaged over all the atoms.

In Fig. 8 we compare the radial distribution functions 𝑔(𝑟) of the direct summation to the treecode for the three MAC values
𝜃 ∈ {0.3, 0.5, 0.7}. The radial distribution function is a structural property that provides a measure of the arrangement of atoms in
the liquid. The radial distribution function is not very sensitive to accuracy differences, thus all the three treecode simulation results
match very well with the direct sum results.

Figs. 9 and 10 are the velocity-velocity and force-force autocorrelation functions respectively. These are dynamical quantities
and are more sensitive to accuracy differences. Comparisons of the correlation functions provide a measure of the similarity of
the dynamics of the MD simulations using the treecodes to that of the direct sum. Although all three treecodes are qualitatively

similar to the direct sum results, the treecode with 𝜃 = 0.3 provides the best overall quantitative match as expected. Treecode

12
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Fig. 8. Radial distribution function 𝑔(𝑟).

Fig. 9. Velocity-velocity autocorrelation function 𝐶𝑉 𝑉 (𝑡).

Fig. 10. Force-force autocorrelation function 𝐶𝐹𝐹 (𝑡).
13



H.A. Boateng and S. Tlupova Journal of Computational Mathematics and Data Science 5 (2022) 100068

t
i

p

d

algorithms are typically used to approximate long-range kernels. The Lennard-Jones potential, however, is a short-range kernel.
The simulation results show that the treecode can provide efficient approximations for a short-range kernel as well. This suggests
that in MD simulations with both short-range and long-range potentials, such as in electrostatic systems with both Lennard-Jones
and Coulomb potentials, a treecode can be used to provide simultaneously approximation of both potentials in order to achieve
better computational speed, instead of the standard approach of computing the short-range and long-range interactions separately.

6. Conclusions

This paper developed two treecode methods, particle-cluster and cluster-particle, based on a tricubic interpolation method in
hree dimensions. The kernel representing pairwise particle interactions is interpolated by a cubic polynomial in three dimensions
n a way that is computationally efficient and allows straightforward approximations of the derivatives of the interpolated kernel.

An error analysis was provided that shows that the decay rate of the error in the approximation of an interaction between a
article and a cluster is quartic in the MAC, 𝜃. A numerical evidence for quartic decay of the error was also provided.

We performed numerical tests on the Coulomb, screened Coulomb and real space Ewald sum kernels. The numerical tests
emonstrated the typical 𝑂(𝑁 log𝑁) scaling of the treecode for both versions of the treecode. Additionally, the numerical tests

showed, as expected, that particle-cluster and cluster-particle have similar numerical efficiency when the targets and sources in the
treecode algorithm are the same.

We also provided an application of the particle-cluster treecode in a molecular dynamics simulation of liquid Ar. The simulation
results provided evidence that the treecode is able to reproduce both structural and dynamical properties of a chemical system, even
for the short-range Lennard-Jones kernel.

The algorithms presented here used analytical derivatives of the kernels. One extension of the work is to develop a kernel
independent extension of the algorithms which uses numerical derivatives for the kernels. The tricubic interpolation employed in
the treecodes guarantees global 1 continuity. In a follow up paper, we study the effect of smoothness on the accuracy of treecode
methods. Higher smoothness can only be achieved through the use of higher order interpolating polynomials, such as a triquintic.
Future extensions of this work will develop and implement higher order interpolations to achieve higher global smoothness.
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