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1. Introduction

Tricubic interpolation have been used very successfully in a range of fields, including ocean dynamics [1], plasma
dynamics [2], image processing [3], particle physics [4], computational chemistry [5-7] and structural biology [8]. Lekien
and Marsden (LM) [9] developed an isotropic tricubic interpolation scheme, defined on a rectilinear mesh, that did not
separate the interpolant into a tensor product of three one-dimensional polynomials. Compared to the tensor product
approach, the method due to LM has a reduced computational cost and provides easy access to more accurate derivatives.
Lekien and Marsden also showed that their method has global ¢! continuity but cannot achieve global ¢? continuity. Thus,
the interpolants for two adjacent meshes have the same function and first partial derivative values at the common face.

There is a need for higher order interpolants with a concomitant increase in smoothness. For example, it has been
observed that, in particle simulations, the smoothness of the tricubic interpolation has an effect on the accuracy of the
dynamics [2,6,7]. Additionally, in applications where second order derivatives of the interpolated kernel are required, such
as in molecular dynamics simulations with dipoles, tricubic interpolation will not be very effective because of the lack of
global ¢? continuity.

This paper is a response to the need for higher order nontensorial interpolants. A search of the literature shows that
triquintic interpolation has been implemented in cosmological simulations [10] and in fracture mechanics [11]. However,
neither of these two works provide details about their implementation nor a study of the continuity and convergence
properties of their interpolator. We extend the work of LM to systematically develop a triquintic interpolation method
that is also isotropic. We prove that the method is globally ¢? continuous but lacks global ¢ continuity. We also prove
that for a cubic mesh element of length x, the error for the tricubic interpolant decays uniformly as O(x*) while the error
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for the triquintic interpolant decays uniformly as ©(x®). Finally, we provide numerical evidence of the decay rate of the
errors and the accuracy of the tricubic and triquintic interpolations.

The paper is organized as follows. In Section 2 we describe the tricubic interpolation method developed by Lekien
and Marsden [9]. We develop the triquintic interpolation method in Section 3. In Section 4, we prove that the triquintic
method is globally ¢? continues and that it lacks global ¢3 continuity. We derive the convergence rate of the interpolants
supported by numerical evidence in Section 5 and summarize our conclusions in Section 6.

2. Tricubic interpolation

Let the function f be defined over a three dimensional rectilinear mesh. Then f is interpolated on and inside the unit
cube mesh element (represented in Fig. 1) by the polynomial

X y,z Z aukXJ/’Z _Ot m, (1)

i,j,k=0

where the 64 unknown coefficients a; are ordered into a vector a by defining

Q1titairiek = ijke, i,j,k=0,1,2,3, (2)
and the monomials x'y/z* are ordered into the vector u through a similar definition

Mivisgpree = XY2,  1,j,k=10,1,2,3. 3)
To determine the 64 coefficients a;, LM enforced the following 8 linearly independent constraints

P of AP of 0P of
P = = 3y =3y 52 = ar

*p %f 9P f  3*p 9%f 3P o3f
9xdy  axdy’ 0xdz  oxdz  dydz  0ydz oxdydz  9xdydz ]

at the eight vertices of the unit cube to generate a full rank sparse linear system

Ba = b. (5)

Here B is the 64 x 64 invertible coefficient matrix generated by applying the constraints to the polynomial and b is
obtained from applying the constraints to the function. This choice of constraints is the only set that yields an isotropic
interpolant with global ¢! continuity. The coefficient vector is computed explicitly as &« = B~'b. The matrix B~! is
independent of the function being interpolated and can be stored to be reused for different evaluation points within
the mesh and for different functions. This feature is the main reason why the LM tricubic has less computational cost
compared to the tensor product version.

3. Triquintic interpolation

The triquintic interpolant is defined over the same unit cube, depicted in Fig. 1, as the tricubic. A function f is
represented locally on and inside the unit cube by the polynomial

Px, ¥,z Z aX'yz" = o' . (6)

i.j,k=0
The elements of the vector « are given by

1titeir3ek = dijk i,j,k=10,1,2,3,4,5, (7)
and the elements of the vector u are similarly ordered as

Pisivsiesse = XYz, 0,j.k=0,1,2,3,4,5. 8)

We need 216 linearly independent constraints to determine the 216 coefficients a;. Following LM [9], our constraints
will be defined at the eight vertices of the unit cube. Thus we require 27 constraints repeated at each vertex. We would
like the interpolant to be isotropic and to achieve global ¢? continuity.
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P Py

P Py

Fig. 1. The unit cube mesh element.

3.1. Constraints for triquintic interpolation

Because we want the interpolant to be at least globally ¢? continuous, the function and all its first and second
derivatives must agree with the polynomial at the vertices of the cube which leads to the 10 constraints
[P—f aP _of 9P _of 9P  of
T 9x ax’ dy  dy’ dz 9z’
a?p 9 9p *f 9P ¥f PP ¥f 9P 0%f 9t 3% }

(9)

ax2  ax2’ oxdy  oxdy oxdz  oxdz  dy2  9y2’ aydz  dydz  9z2  9z2
Next, we match the third derivatives. First, we note that along any axis, the triquintic interpolant is just a fifth degree
spline whose 6 coefficients are uniquely determined by the value of the function and its first and second derivatives at
the endpoints of the interval. As such, constraints involving derivatives of the form

a"P

sV ’
are dependent on the function and its first and second derivatives and thus are extraneous. As an example, consider the
interpolant along the x-axis (y =z = 0),

v >3, se{xy, z}, (10)

5

P(x,0,0) = Z GiooX' = Gooo + Q100X + 200X + 300X’ + AagoX” + As00X’, (11)
i=0
P 2 . i—1 2 3 4
a = Z 1ajpoX = Qy00 + 2a300X + 3a300X~ + 4as00X° + 5as500X”, (12)
i=i
R .
W = Z l(l — 1)(1{00)(1_2 = 20200 + 6(1300X + 12(1400)(2 + 20(1500){3, (13)
i=2
PP :
ﬁ = Z l(l — 1)(1 — 2)0[00){1_3 = 60300 + 240400)( + 60(1500){2. (14)
i=3

Evaluating Eqs. (11) to (14) at the left and right endpoints of the spline interval, P; = (0,0,0) and P, = (1,0, 0)
respectively, we get

P %P 3p
= a100, = 20200,

= Qooo; oy =
9x2 1(0,0,0)

= 6aspo, (15)

)(0,0,0) 3x 1(0,0,0) 3x3 l,0,0)
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’(1 00) = dooo + G100 + 200 + A300 + 400 + G500, (16)
P
*’ = Qq00 + 2a200 + 3a300 + 4d400 + 50500, (17)
dx 1(1,0,0)
%P
Py = 20300 + 6a300 + 12a400 + 20as00, (18)
dx? 1(1,0,0)
3P
73’ — 6a300 + 244400 + 60as0o. (19)
dx> 1(1,0,0)
We observe that
3P P P
— =— 6079‘ + 6079‘ — 36— —24— (20)
ax3 1(0,0,0) (0,0,0) (1,0,0) 0x 1(0,0,0) 0x 1(1,0,0)
a2p 3 3?P
0x2 1(0,0,0) ax2 l(1,0,0)
and
83P oP 0P
i - 607?‘ +607>‘ —u2Z 362 21)
ax3 1(1,0,0) (0,0,0) (1,0,0) dx 1(0,0,0) dx 1(1,0,0)
P ‘ %P ‘
3x2 1(0,0,0) 3x2 1(1,0,0
thus we omit the constraint % = % Similarly, by symmetry, we omit the constraints "33773’ = Zyif; and ";773’ = % The

remaining set of third derivatives provide the 7 constraints

a3 BN a3 33 33 33
R S B s )

X209y 0x20y’ 9x29z  9x29z’ oxdy?  oxdy?’
3*P *f  p  f ¥ f  Pp  9f }

axdydz _ 0xdydz' 0y*dz  9y*dz  oxdz2  9xdz2  dydz:  dydz?

which are invariant under a rotation of the axis and thus maintain the isotropic property. The final 10 constraints are
given by the fourth, fifth and sixth order derivatives which do not involve derivatives of the form given in Eq. (10). These
10 constraints are

[ P 3 ar Y a*p 9 (23)
ax29y?  0x29y?’ 0x20z2  9x20z%  9y20z%  9y?0z%’
P ¥ P*r ¥ ar }
9x20ydz ~ 0x2dydz  9xdy2dz ~ 0xdy*dz  0xdydz®:  09xdydz2
P 9°f P 9°f P 9°f
[ 250v297  9x29v28z° 9x2 27 52 2’ 25,2 22}’ (24)
0x%0y?dz  0x%0y?dz 0x%0ydz 0x%20y0z?  0xdy?0z dx0y?0z
and
a%p 3
[ _ f ] (25)
0x20y20z2  9x20y20z2
These last 10 constraints are also invariant under axis rotation, thus the interpolant is isotropic.
3.2, The triquintic linear system
To determine the 216 coefficients, the 27 constraints are enforced at the eight vertices of the cube, Py, ..., Pg to

generate the full rank system defined in Eq. (5). We order the elements b; in vector b, and hence the rows of matrix
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yA
V4
v3
L
vy P Pr
V2
(O]
X
Fig. 2. Adjacent mesh elements.
B, by defining
d%*f(Pi A*f (P
fPy), 1<ics, P gg gy TPw) g sy
0z2 0x2022
of (Pi— d3f (P d*f (P
f(18)7 9<i<16. f(zso)’ 81<i<s8s, f(1152), 153 < i< 160
0x 0x23y 0y202z2
of (P 3f (P d*f (P
f(l]G)’ 17<i§24, f(zSS)a’ 89<i§96, f(l]GO)’ 161§i§168
ay 0x29z 0x29y0z
af (Pi— 3f (P A*f (P
f(124)7 25 <i<32, f(z%)’ 97 <i< 104, f(Pi 168)’ 169 < i < 176
0z 0x0y? 0x0y20z
O%f(Pi 33f(Pi I (P
b = M, 33 < i < 40, M, 105 <i < 112, M, 177 <i< 184 (26)
x2 0x0y0dz 0x3y0z2
O2f(P;_ 3 (P (P
f(P; 40)7 41 <i<4s, f(Pi—112) 113 <i < 120, f(P; 184), 185 < i < 192
0x0y 0y20z 0x20y29z
O%f(Pi 33f(Pi 3f(Pi
f(P; 48)7 49 < i <56, f(P; 120)’ 121 <i < 128, f(P; 192), 193 < i < 200
0x0z 0x0z2 0x20y0z2
3%f(P;_ 3 (P, (P
f(P; 56), 57 <i<64, f(Pi—12s8) 129 <i < 136, f(P; 200), 201 <i <208
0y? 0yoaz2 0x0y2022
O%f(Pi I (P 35f (P
f(P; 64)7 65 <i<72. f(P; 136)’ 137 < i < 144, f(P; 208), 200 < i< 216
dyoz 0x20y? 0x20y20z2
We solve for the coefficients as & = B~'b and the polynomial defined in Eq. (6) becomes
Px.y.2)=b" (B") (27)

The matrix B~! is sparse with 9261 non-zero elements. Because the matrix depends only on the unit cube mesh and not
on the function being interpolated, it is stored and reused. The scaled matrix 8B~! is available online [12].

4. Smoothness property of the isotropic triquintic interpolant

Now, we study the smoothness property of the triquintic interpolant. First, we prove that the interpolant has global ¢?
continuity. Then we show that global ¢ continuity does not hold for the triquintic interpolant. The triquintic polynomial
interpolant P(x, yz) is C* inside any mesh element and as such, its global smoothness is determined by the smoothness
properties at the boundary of each mesh element. Following LM, we will focus our analysis on the common boundary(face)
(v1, v3, Vg, v2) between two adjacent mesh elements in Fig. 2. By symmetry, the analysis will apply to the other faces.

4.1. Proof of global ¢? continuity

Lemma 1.

The triquintic interpolant P is everywhere continuous.
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Proof. Consider the adjacent mesh elements in Fig. 2 and their boundary (v, vs, v4, v2). Our goal is to show that at
the boundary (vq, v3, v4, v2), the interpolant in the left mesh element, P, is equal to the interpolant in the right mesh
element, PR, which is sufficient to prove continuity across the boundary.

For P!, x = 1 at the boundary, thus

PH1.y.2) = Z (Z a,,k> Yz = (o) k. (28)

J.k=0

where the elements of vector a! are ordered as
O e =Y . J.k=0.1,2,3,4,5, (29)

and the elements of vector u* are similarly ordered as
whee=Y2 . k=0,1,234,5. (30)
For PR, x = 0 at the boundary, hence
R(0,y.2 Zaojk;ﬂz = (®)" uk, (31)
jik=
with the elements of vectors af and uR ordered as

of ek = ok Jok=10,1,2,3,4,5, (32)
and

1 e =2 . k=0,1,2,3.4,5, (33)

respectively. Now notice that u! = uf, thus to show that P! = PR on the boundary, we only need to show that a! = aR.

We solve for e from the linear system

Blat — B, (34)
and for af from the linear system

BRa® = bR, (35)

At the four vertices {v1, v,, vs3, v4}, we enforce the subset of the original 27 set of constraints

(pog, 78 0 it ooy iy
dy  dy’ dz 3z  9y>  9y?’ dydz  dydz’

8273_ 9Xf P 33f 33p d3f 4P d4f }

(36)

922 T 8227 9y2z  0y*dz’ 0ydz2  0yaz2’ 9y20z2 | 9y2072

which do not involve derivatives in x. These 9 constraints remain linearly independent since the larger set is linearly
independent [13]. Because u' = uF, and the constraints are the same for both P! and P, the coefficient matrices B* and
BR in Eqgs. (34) and (35) respectively, are the same (see Ref. [14] for the coefficient matrix). In addition, the right-hand

6
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sides b* and b® depend only on the data f, as such

f(vi), 1<i<4
82
Bzi(v’ 20)s 21<i<24
a
%(UI—O, 5<i<8
o3f )
m(vi—zd, 25<i<28
of _
- <i<
b =pf = az(vlfs)s 9<i 12 a3f -
W(vi—zs), 29<i<32
52
Bé(v' 12), 13<i<16
y
04 ‘
W(vi—n), 33<i<36
32
ayafz(vi—l(i), 17 <i<20
It follows then that
@ = (BB = (8o =, -

hence P! = PR and thus the interpolant is continuous across the boundary. Similar arguments for y and z, lead to the
conclusion that the interpolant is continuous everywhere. O

Lemma 2. Derivatives of the form
rtvp
dyrazv’

are continuous on the mesh element boundaries perpendicular to the x-axis.

y+v=123,45,6,

Proof. From Lemma 1, P' = PR on the boundary, (v;, v3, v4, v). Since the interpolants are polynomials in y and z, this
means that their derivatives match to any order on the boundary. But (vq, vs, v4, v2) is an arbitrary boundary perpendicular
to the x-axis, thus,

ay+vPL 8V+UPR
Ayraz® ~ Jyrozv

on mesh boundaries perpendicular to the x-axis. O

’

fory +v=1,23,4,5,6, (39)

Corollary 2.1. Derivatives of the form

artvp
, y+v=1,23,45,6,
axY dyv
are continuous on the mesh element boundaries perpendicular to the z-axis while derivatives of the form
artvp
) v=1,2,3,4,5,6,
X7 9z v+

are continuous on the mesh element boundaries perpendicular to the y-axis.
Proof. The corollary follows from Lemma 1 and from Lemma 2 by symmetry. O

Lemma 3. The polynomlal is continuous on the boundary (v, vs, vy, V2).

Proof. Just as in the proof of Lemma 1, it suffices to show that ‘w —(1,y,z)= ‘w —(0,y,2). We start by differentiating P
with respect to x to get

55
x v,z Z Zlaij,<xi_13/jz". (40)

Jj.k=0 i=1
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On the boundary,

9 L
873 (Ly,z Z (Zlauk> = )T . (41)

J.k=0

where

oo = D i, j.k=0,1,2,3,4,5, (42)
and

aPR

0,y,2 Z ay Y2* = (oF)" gk, (43)
Jj.k=

with

oY ek = Q. J k=10,1,2,3,4,5, (44)
and

Wiieoe = Wi se = Y25 Jk=0,1,2,3,4,5. (45)

Again, we have u* = uR, hence we only need to show that af = oF. At the four vertices {vy, vo, v3, v4}, we enforce the
following subset of the original set of constraints

[ajzg a%p _ %f 3P _ kf  p _ 33 a3p _ 03f (46)
dx  9x  0xdy  Oxdy’ 0xdz  0x0z 0xdy?  0xdy?  9xdydz  0xdydz’

a?pr  Of ap Y Y PP ¥f

dxdz2 ~ 0xdz2’ 9xdy2dz  Oxdy20z  0xdydz2  9xdydz?  0xdy20z2  9xdy*dz? }

which involve just a single derivative in x. This leads to the same coefficient matrix B* = BX for linear systems for o* and
of and the same right-hand sides

a
—f(vi), 1<i<4
ox
d3f .
Bxazz(v' —20), 21<i<24
9°f
(U1—4)» 5<i<8
0xdy .
a°f
———(vj_24), 25 <1<28
8x8y282(v1 24) =1=
L R 0’f ;
b =b" = { ——(vis), 9<i=<12 (47)
0x0z
o°f ( ), 29<i<32
T Ao 5\Vi-28), =1=
axdyazz %8
03f .
—— i), 13<i<16
0x03y?
3> f .
W(”i%z), 33<i<36
d3f .
————(vi_), 17 <i=<20
dx0ydz
Thus, o& = R, which implies that " (1 v,zZ) = ;f(R(O,y,z) and hence "3—7: is continuous on the boundary (vq, vs,

vg, U2). O

Corollary 3.2. The polynomial 22, s € {x,y, z} is continuous on mesh boundaries perpendicular to the s-axis.

s

Proof. From Lemma 3 37; is continuous on the boundary (vq, vs, v4, v2). The boundary is an arbitrary boundary
perpendicular to the x-axis, thus P is continuous on any mesh boundary perpendicular to the x-axis. Then, by symmetry
and Lemma 3, 37’ and < 37’ are contmuous on any mesh boundary perpendicular to the y and z-axes respectively. O

Theorem 4 (Global ¢! Continuity). The triquintic interpolant P is C! continuous everywhere.

8
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Proof. From Corollaries 3.2 and 2.1, the first derivatives of 7 are continuous on any mesh boundary perpendicular to the
x, y and z axes, thus P is everywhere ¢! continuous. O

Lemma 5. The derivatives
%p %P
—— and ——
axay 0X0z
are continuous on mesh boundaries perpendicular to the x-axis.

Proof. From Lemma 3 and Corollary 3.2, 22 is a polynomial in y and z and continuous on mesh boundarles perpendlcular

and 22 are

to the x-axis. Thus all derivatives in y and z are also continuous on these boundaries. Specifically, 2 my 02

continuous on mesh boundaries perpendicular to the x-axis. O

Corollary 5.1. The derivatives
a2p a2p
and
dxdy dyoz

are continuous on mesh boundaries perpendicular to the y-axis and
a2p 2P
an
X0z dyo0z

are continuous on mesh boundaries perpendicular to the z-axis.

Proof. The corollary follows from Lemma 5 and symmetry. O
Lemma 6. The mixed second derivatives are globally continuous.

Proof. Lemma 2, Corollary 2.1, Lemma 5 and Corollary 5.1 together prove that the mixed derivatives are continuous on
all boundaries and hence are globally continuous. O

2P .
Lemma 7. The polynomial aax? is continuous on the boundary (v1, vs, vg, V2).

Proof. The proof is similar to that for Lemmas 1 and 3. It is sufficient to show that B;EL(L y,z)= ",ﬁR (0,y, z). Note that

2

5 5
0“P
) (x,y,z Z Zl i — agx2y'z. (48)

k=0 2=1

On the boundary,

82PL > ik T
W(1,y,z):Z > i — Dag | y2* = (o) wt, (49)
J.k=0

i=2

where
5
o= D i~ Dag,  j.k=0,1,2,3,4,5, (50)
i=2
and
8277R
0,y, 2a z s 51
2 (0.2 ]kzo e ¥YZE = (@) (51)
with
of ek =2k j.k=0,1,2,3,4,5, (52)
and
Wijree = Wi =Y J.k=0,1,2,3,4,5. (53)
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Again, we have u! = R, hence we only need to show that ' = «F. At the four vertices {v, v,, v3, v4}, we enforce the
following subset of the original set of constraints

{ﬁfzﬁi 3p :av Wp::av 4P _ % 4P _ *f (54)
ax2  9x27 9x20y  0x20y  0x20z  0x23z° 0x20y?  0x29y?’ 0x20ydz  0x29ydz’

P 4 P 0°f P 3°f %P 3f

920z 9x20z%’ 9x20y29z - 9x20y20z" 0x20ydz? - 9x20y0z2° 9x20y20z2 - 0x29y20z2 ]

which involve a double derivative in x. This leads to the same coefficient matrix B" = BR for linear systems for ot and of
and the same right-hand sides

82
BTJ;(UI'), 1<i<4
4 .
W(”on), 21<i<24
33
—J¥m4x 5<i<8
0x2dy ]
9°f
————(vj_24), 25 <i<28
, 3)(23_)/282(1)1 24) ==
a>f .
bL = bR = m(vi_s), 9 <1< 12 (55)
0°f
————(vj_28), 29<i=<32
. 3X28y322(vl 28) =1=
a°f .
sziayz(vFUL 13<i<16
0f
————(vi_), 33<i<36
4 axzayZzazz(vl 32) sis
9
), 17<i<20
0x20y0z
Thus, e = af, which implies that %(1,%2) = 8;Z;R(O,y,z) and hence Zfo is continuous on the boundary
(v1, 03,04, 02). O
Lemma 8. The polynomial :7723 is continuous everywhere.
Proof. Lemma 7 shows that "’32772’ is continuous on faces perpendicular to the x-axis. Corollary 2.1 shows that ";772’

is continuous on faces perpendicular to the y and z-axis. Within a mesh element, P is C*, thus 22772’ is continuous
everywhere. O

Theorem 9 (Global ¢? Continuity). The triquintic interpolant P is C? continuous everywhere.

92 2 a2 . . . .
"377;, 1772’ and ‘22723 are continuous everywhere. And the mixed second derivatives

are continuous everywhere, according to Lemma 6. Thus, P has global ¢? continuity. O

Proof. From Lemma 8 and symmetry,

4.2. Global C* continuity does not hold
Theorem 10. The triquintic interpolant P is not C> continuous everywhere.

Proof. We prove by contradiction. Consider the interpolant along the x-axis (y = z = 0). Without loss of generality, we
focus on two adjacent mesh elements on the interval [0, 2] where the left mesh is on [0, 1] and the right mesh is on
[1, 2]. Define the left interpolant as

PH(x,0,0) = agoo + A100X + A200%> + A300%> + Aagox” + As00X°, (56)
and the right interpolant as
PR(x,0,0) = booo + b10oX + b200X” + b300X> + bagoX* + bsooX’. (57)

The left and right interpolants are fully determined by the values of the function and its first and second derivatives in x
at the endpoints of the intervals [0, 1] and [1, 2] respectively. We find that

1
agoo = f(0,0,0), aigo = fx(0,0,0), azo = Efxx(O, 0,0), (58)

10
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faxo] [ 10 —4 1/27[f(1,0,0)—f(0,0,0) = £(0,0,0) — 3f(0,0,0)]
Qg0 | = | =15 7 -1 £(1,0,0) — £(0, 0, 0) — fix(0, 0, 0) ; (59)
Ld500.] L 6 -3 1/2— L fXX(la 07 0) _fXX(Ov 0! 0) B
1
booo = f(1,0,0), bigo = fx(1,0,0), a0 = ifxx(ls 0,0), (60)
[bse] [ 10 —4 1/27[f(2,0,0) = f(1,0,0) — £(1,0,0) — 3fx(1,0,0) |
bao | = |15 7 -1 £(2,0,0) — £(1,0,0) — fix(1, 0, 0) : (61)
—bSOO— L 6 -3 1/2— L ﬁ(x(za 07 0) _fXx(lv 0! 0) B
Assume that the interpolant is ¢* continuous everywhere. Then, specifically,
83'PL 33PR
13070:7050707 62
55 (1.0.0) = =5-(0,0,0) (62)

which implies that,

a3g0 + 40400 + 5asg0 = b3po. (63)
From Eq. (59),
@300 + 4d400 + 5aso0 = 10(f(1, 0, 0) — f(0, 0, 0)) (64)

~45(0,0,0) ~ 6(1,0,0) — £s(0,0,0)+ /s(1,0,0),
and from Eq. (61),
bon = 10/(2, 0,0) ~ £(1,0,0)) ~ 6/(1, 0,0) ~ 45(2,0, 0) - fu(1,0,0) + 2 (2. 0,0). (65)

Note that because the interpolant is ¢ continuous everywhere,

dooo = booo, @100 = b1oo, and a0 = bapo. (66)
Then the consequence of Egs. (58), (60) and (63) is that, for every interpolated function,

1

4(f(2,0,0) — £x(0,0,0)) — E(fxx(z; 0, 0) — 21f(0, 0, 0)) = 10(f(2, 0, 0) — (0, 0, 0)), (67)
which is false. Thus, the triquintic is not globally ¢3 continuous. O
5. Error analysis and numerical results

First, we prove that for the tricubic interpolant, the uniform error decays as a quartic and for the triquintic interpolant,

the error decays as a sextic. Along the way, we show that the pointwise error decay for the tricubic is quadratic and for
the triquintic it is cubic.

5.1. Error analysis

Theorem 11. For a cubic mesh of length x, the error for the tricubic interpolant decays uniformly as ©(x*) and the error for
the triquintic interpolant decays uniformly as O(x®).

Proof. Let f(x, y, z) € C* be the function to be interpolated. Then, the Taylor series for f centered at the origin 0 = (0, 0, 0)
is

fx,y.2)= i Loy Xy'z* (68)
Y it iljlk! 9xiyizk l(0,0,0) '
Define the tricubic interpolant as
3
Ps(x, y,z) = Z agX'y'’z¥, (69)
i,j,k=0

and the triquintic interpolant as

5
Ps(x,y,2)= Y buxyz". (70)
i.j, k=0
11
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Apply the tricubic constraints given in Eq. (4) at (0, 0, 0) to compute 8 of the coefficients of 5. Similarly, apply the
triquintic contraints in (9), (22), (23), (24) and (25) at (0, 0, 0) to compute 27 of the coefficients of P5. We find that

8i+j+kf
Aijxk = ———— 5 i, ',k:0,‘l, 71
ik 0x10y99zk 1(0,0,0) 1 7D
1 itk
b,:’j"k = f i,j, k= 0, 1, 2. (72)

iljlk! 9x19yi9zk 1(0.0.0)°
Then the residual for the tricubic is given as
r(x,y,2) = f(x,y.2) — P3(X, ¥, 2), (73)
1
=3 ((fx(0) — 2200 )%* + (fyy(0) — 2a020)y* + (fzz — 201002)2)
1 8i+j+k o
Z < / - aijk) XyZt + o(x*),

iljlk! 9xiyizk (0.0,
i+j+k=3 J Y 00,

and the associated uniform error is defined as

max |r3(x,, 2) = max [f(x,y,z) = Pa(x, y, 2)]. (74)
Note that the coefficient

ao = 3f(1,0,0) — 3f(0, 0, 0) — 2£,(0, 0, 0) — f,(1, 0, 0), (75)

which is not necessarily equal to % fxx(0). Similarly, agyo and agp, are not necessarily equal to % f,y(0) and % f2(0) respectively.
Thus, the pointwise error in a tricubic interpolation given by

e3(xvysz) = If(xvyvz) - 7)3(X7yaz)| ’

1
=13 ((fx(0) — 2200 )%* + (fyy(0) — 20020)y* + (foz — 20002)2%) + -+ -/, (76)

decays quadratically.
To prove that the uniform error for the tricubic decays as O(x*), we need to show that, at a minimum, the coefficients

of the quadratic and cubic terms in r3(x, y, z) behave as ©(x?) and O(x) respectively. We do this by expanding the function
values such as in Eq. (75) around (0, 0, 0). In Appendix A, we show that

1 1 1
Efxx(o) — a0 = O(x?), jfxxy(o) — ay10 = O(x?), ?fxxx(o) — a0 = O(x).
By symmetry, similar relationships hold for the other coefficients of the quadratic and cubic terms. Thus,
max [f(x, y, z) — P3(x, ¥, 2)| = O(x*), (77)
X

where we have also used a1 = f;,(0) given by Eq. (71).
We follow similar arguments for the triquintic interpolant with the residual given as

rs(X,y,Z) =f(X,y,Z)—P5(X,y,Z), (78)
1
=35 ((fx(0) — 6b300)X> + (f5(0) — 6b030)y> + (frzz — 2boo3)z°)

1 3i+j+kf _ 5
+4§i+12'+:k§5 <W 0xyiz* lo.0.0) aijk) XYz oL,
and
max [r5(x, y, z)| = max [f(x, y, z) — Ps(x. y, 2)I, (79)

defines the triquintic uniform error. Note that, Eq. (15) and Eq. (20), imply
3 1
b3oo = 10(f(1, 0, 0) — f(0, 0, 0)) — 6£x(0, 0, 0) — 4f(1, 0, 0) — Efxx(O, 0,0)+ Efxx(]v 0,0), (80)

which is not necessarily equal to %fm(o). Similarly, bg3p and bgg3 are not necessarily equal to %fyyy(O) and %fw(o)
respectively. Thus, the pointwise error in the triquintic interpolation given by

eS(va!Z) = If(x’yaz)_PS(X7yaz)|v
1
=15 ((fiax(0) — 6b300)%> + (fy(0) — 6bo30)y> + (fzz — 6boo3)z’) + - -+, (81)

12
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Fig. 3. Numerical evidence for decay rate of the pointwise errors for the tricubic and triquintic interpolants. The top plot is for f(x,y, z) and the
bottom plot is for g(x, y, z).

decays as a cubic.

We need to show that the coefficients of the cubic, quartic and quintic terms in rs5(x, y, z) behave as O(x3), ©(x?) and
O(x) respectively in order to prove that the error for the triquintic decays uniformly as O(x®). We do this by expanding
the function values, such as in Eq. (80) around (0, 0, 0). In Appendix B, we show that

1
?fxxx(o) — b3po = O(X4)7

1 1

Efxxxx(o) — bago = O(x*), gfxxxy — b310 = O(x*),

1 1 1
;fxxxxx(o) - b500 = O(X4), Efxxxxy(o) - b410 = O(X3), afxxxyy(o) - b320 = O(Xz)v

1
ifxxxyz(o) - b311 = O(Xz).

Again, by symmetry, similar relationships hold for the other coefficients of the quadratic, cubic and quartic terms of
the residual. Thus,

max |f(x,y, z) — Ps(x, y, z)| = O(x°), (82)
X
where we have also used the values for by, given by Eq. (72). O

5.2. Numerical results

1
e (P
plot) and g(x,y,z) = (x* + y*> + 2?) - e~ +2?) (bottom plot). The absolute errors are computed along the vector
r=y (3. 1.1), where y =0:0.001: 0.1. Fig. 3 is a log-log plot of the errors vs r = |r|. We see that the absolute error
for the tricubic, e;(x, y, z), matches y = C - r? to support the conclusion in Eq. (76). Similarly, the triquintic absolute error,
es(x,y, z), matches y = C - r3, as predicted by Eq. (81).

Fig. 3 also shows that as expected, the triquintic interpolant is more accurate than the tricubic interpolant. Fig. 4
provides further study of the comparative accuracy of the two interpolants. We plot the error for the interpolation of a
function and its derivatives {Bx, Oxy, axyz} at 50 randomly generated points in the unit cube. Results are provided for the
same two functions, f(x,y, z) (left column) and g(x, y, z) (right column). As expected, triquintic interpolation provides
higher accuracy for a function and its derivatives.

Table 1, compares the accuracy of the integrals of the interpolants for f(x, y, z) and g(x, y, z). We use MATLAB's in-built
numerical quadrature function to compute f[OJP f dx and f[oyug g dx. The integral for the interpolants are computed as

Fig. 3 provides numerical evidence for pointwise errors given in Eqs. (76) and (81) for f(x,y,z) =

n

/101”3 Pdx = Z

i.j,k=0

n

ik dy — ik
/m,usa”"xﬂ W=D TG e (83)

i.j,k=0

13
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Fig. 4. Comparison of the error in the tricubic and triquintic interpolants for 2 functions and their derivatives. The left column is for f(x,y, z) and
the right column is for g(x,y, z).

= @l 10" w5, 2
100 |—e=y=C-a* (7 ——y=C-af
/)
/
/
/
/
/
. /
2 ’
D /
s10TF 4
o Y/
/
1
f
d/
/
2! . . . 3 . .
10 0.4 0.6 0.8 10 0.4 0.6 0.8
X X

Fig. 5. Numerical evidence for the decay rate of the uniform norm of the errors for the tricubic and triquintic interpolants for u(x, y, z)

= (+y*+2%).
The left column is uniform error for the tricubic and the right is the uniform error for the triquintic.

where n = 3 for the tricubic and n = 5 for the triquintic. Table 1 shows that the triquintic approximation of the integrals
is more accurate than the tricubic approximation.

Figs. 5 and 6 provide evidence for the uniform errors given in Eqs. (77) and (82) for the functions u(x,y,z) =
(*+y 4—22)3 and v(x,y,2) = (x* +y? +22)4_ The length of the cube x = 0.3 : 0.05 : 0.9. For each length of the
cube, the maximum norm of the residual is computed over 100 randomly generated points in the cube. In both Figs. 5
and 6, we see good agreement with the decay rates given in Theorem 11.

14
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Table 1

Accuracy of integrals of the interpolants.
Interpolant fl’0»113 f(x) — P(x) dx f|’0,1]3 g(x) — P(x) dx
P 0.128868208976672 0.010551038583430
Ps 0.018646565877596 0.001756644668320

[I73(z, y, 2)[|o
[Irs(@,y, 2) o

-3 L L -3 L L
1 1
0 0.4 0.6 0.8 0 0.4 0.6 0.8

X X

Fig. 6. Numerical evidence for the decay rate of the uniform norm of the errors for the tricubic and triquintic interpolants for v(x, y, z) = (x> 4+y*+z2)*.
The left column is uniform error for the tricubic and the right is the uniform error for the triquintic.

Before we conclude, we note that as explained by Lekien and Marsden, even though the presentation has been
focused on Cartesian grids, the development extends to rectilinear grids as well. For a rectilinear mesh unit [Xmin, Xmax] X
[Vmin, Ymax] X [Zmin, Zmax], the mesh unit is mapped to the unit cube via the transformation

T(x, y,2) = X — Xmin Y _ymin7 Z — Zmin = (%.7.2), (84)
Ax Ay Az

where AX = Xmax — Xmin» AY = Ymax — Ymin aNd Az = Zmax — Zmin. Then, the triquintic interpolant is defined as

’

5
Pi.y.2)= Y  apXyz". (85)

ij,k=0
The elements of the right-hand side vector b defined in Eq. (26) are scaled accordingly as
8,3+y+vf

AP AYY AP ——
v 0xPayY dz¥

, B,y,vel0,1,2} (86)
6. Conclusions

This paper developed an isotropic triquintic interpolant and proved that the interpolant is ¢? continuous everywhere.
The driver of the interpolation method is a 216 x 216 invertible matrix that relates the coefficients of the interpolant
to the function and its derivatives at the eight corners of a unit cube mesh element. We proved that the method is not
¢> continuous globally and that the error decays as a cubic. Numerical tests were provided to support the analysis of

the convergence of the method. The advantages of the triquintic interpolant developed in this paper over the tricubic
interpolant of Lekien and Marsden [9] are:

(1) The triquintic is ¢?> everywhere and thus has higher smoothness while the tricubic is globally C.
(2) The triquintic is more accurate than the tricubic for approximating function values.
(3) The triquintic produces more accurate interpolation of higher order derivatives.

The disadvantage of the triquintic is that it requires up to 6th order derivatives of the interpolated function while the
tricubic requires only up to 3rd order derivatives. Additionally, the tricubic matrix is 64 x 64 while the triquintic matrix

15
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is 216 x 216. This disparity in matrix sizes will perhaps be an issue if the matrix-vector multiplication has to be done
many times. However, the best use case for both interpolants is when several values inside the unit cube need to be
interpolated. Then the coefficients of the interpolant are computed once by Eq. (5) and used repeatedly to interpolate all
the needed values. In this case, the difference in computational cost between the tricubic and triquintic interpolants are
negligible.
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Appendix A. Asymptotic behavior of coefficients of the tricubic interpolant residual

A.1. Behavior of (3;fx(0) — az00)

Eq. (75) defines
az00 = 3f(1, 0, 0) — 3f(0) — 2f(0) — (1, 0, 0). (A1)
Expand both f(1, 0, 0) and f,(1, 0, 0) as a Taylor series around 0 to get

(1,0,0) = J(0) + £(0) + 2£ul0) + hus(0) + OKY), (A2)

£(1,0,0) = £(0) +£ul0) + 2 fus(0) + OG) (A3)
Then, put Eqs. (A.2) and (A.3) into Eq. (A.1), to get

G = ul0) + OG) (A4)
Then we get,

1
E!fxx(o) — az00 = O(X?).

A.2. Behavior of (3;fuy(0) — d210)

We apply one of the tricubic constraints from Eq. (4) to first evaluate

3%Py
‘ = ay10 + 24210 = fy(1, 0, 0). (A.5)

0x0dy 1(1,0,0)

Recall, from Eq. (71), that aq19 = f,,(0). Then,
1

a210 = 5 (fo(1,0,0) = f(0) . (A6)
Expand f,,(1, 0, 0) about the origin to get

Fiy(1,0,0) = fiy(0) + firy(0) + o). (A7)

Then from Egs. (A.6) and (A.7),
1
210 = Efxxy(o) + O(XZ); (AS)
thus,

1
ifxxy(o) — a0 = O(Xz)-

16
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A.3. Behavior of (3;fux(0) — a300)

First note that
f(1,0,0) = f(0) + fx(0) + azo0 + azqo,
and
of
o = fx(0) + 2a300 + 3ase0 = fx(1, 0, 0).
0x 1(1,0,0)
This implies that

aso0 = fi(1,0,0) — 2f(1, 0, 0) + fx(0) + 2f(0).
Using the expansions for f(1, 0, 0) and f(1, 0, 0) in Egs. (A.2) and (A.3) we see that

1
asp0 = ?fxxx(o) + o).

Thus,

1
afxxx(o) — @30 = O(X°).

Appendix B. Asymptotic behavior of coefficients of the triquintic interpolant

B.1. Behavior of (5fux(0) — bsoo)

From the constraints for the triquintic interpolant, we find that

b300 = 10(f(1a 07 O) _f(ov 0’ 0)) - 6fx(07 0! 0) - 4f)<(1! 07 0) - %fxx(ov 07 0) + %fxx(]v 05 0)

Now, expand f(1, 0, 0), f,(1, 0, 0) and f(1, 0, 0) around (0, 0, 0) to get
3 1 1 1 1 s
f(1,0,0) = f(0) + fx(0) + Efxx(o) + Efxxx(o) + ﬂfxxxx(ﬂ) + ﬁfxxxxx(n) + O(x°),
1 1 1
(1,0,0) = fx(0) + fix(0) + Efxxx(o) + gfxxxx(o) + ﬂfxxxxx(o) + 0(x°),
1 1

fxx(l’ 0, O) = fxx(o) +fxxx(0) + Efxxxx(o) + Efxxxxx(o) + O(X4)~

Put Egs. (B.2), (B.3) and (B.4) into Eq. (B.1) to get

1
b3oo = Efxxx(o) + o(x*),
which shows that
1
Efxxx(o) — bsoo = O(x*).
B.2. Formulas for the by and bsgo terms

We apply two of the triquintic constraints at (1, 0, 0) to generate the equations

P
= = b1oo + 2b200 + 3b3go + 4bago + 5bsoo = fx(1, 0, 0),
0x 1(1,0,0)
32775
’ = 2b2go + 6b3gg + 12bggo + 20bsgp = fix(1, 0, 0).
ax2 1(1,0,0)

We know from Eq. (72) that bigg = f¢(0), 2ba00 = fxx(0), thus Egs. (B.6) and (B.7) imply that

3 1 3
bago = fx(1, 0, 0) — £(0) — fox(o) - fox(l, 0,0) - 5b300,
and

1
bspo = 3 (fix(1, 0, 0) + 2fx(0) — 3fx(1, 0, 0) + 3fx(0) + 3b300) -
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B.3. Behavior of (2 fuuxx(0) — baoo)
We insert Egs. (B.3), (B.4) and (B.5) in Eq. (B.8) to get
1
b400 = foxxx(o) + O(X4)-
Thus,
1 4
Efxxxx(o) - b400 = O(X )
B.4. Behavior of (2 fuuxx(0) — baoo)
We insert Egs. (B.3), (B.4) and (B.5) in Eq. (B.9) to get

1
b500 = gfxxxx(o) + O(X4).

Thus,

1
gfxxxx(o) - bSOO = O(X4)-

B.5. Formulas for the b31g and bay terms

We apply two of the triquintic constraints at (1, 0, 0) to generate the two equations

%P
> ‘ = fiy(0) + 2ba10 + 3b310 + 4bs10 = fiy(1, 0, 0),
axady 1(1,0,0)
3P
5 > ‘ = 2by10 + 6b310 + 12b410 = fiy(1, 0, 0).
ax29y 1(1,0,0)

Then using the fact that 2b,19 = fiy(0), we find that

1
b3 = 3 (3fi(1,0,0) = 3fy(0) — froey(1, 0, 0) — 2f(0)) ,

and

1
b410 = Z (xxy(ls 0, 0) - zfxy(lv 0, 0) + 2fxy(0) +fxxy(0)) .

B.6. Behavior of (4 fouy(0) — b310)

Now expand fy,(1, 0, 0) and fy(1, 0, 0) about the origin to get
1 1
fxy(l, 0,0) = fxy(o) +fxxy(0) + Efxxxy(o) + éfxxxxy + O(X4)»

1
fay(1,0,0) = fuy(0) + frxry(0) + Efxxxxy(o) + O(x%).
Insert Eqgs. (B.16) and (B.17) into (B.14) to get

1
b310 = ?fxxxy + O(X3)~

Thus,

1
gfxxxy(o) - b310 = O(X3).

B.7. Behavior of (2 fowy(0) — bato)

Insert Eqgs. (B.16) and (B.17) into (B.15) to get
1 3
b410 = foxxxy + O(X )

Thus,

1
Efxxxxy(o) - b410 = O(XB)-
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B.8. Behavior of (55; fyy(0) — bao)

Apply one of the triquintic constraints at (1, 0, 0) to get

34P5

0y ‘(1,0,0) = 4byp0 + 12b330 = fuyy(1, 0, 0). (B.20)

Expand fiyy(1, 0, 0) about the origin as

fxxyy(]v 0, 0) :fxxyy(o) +fxxxyy(0) + O(xz)» (B.21)
and use the fact that 4b,y0 = fuyy(0) to get
1
b320 = 3 fee(0) + o). (B.22)
Thus,

1
ﬁfxxxyy(o) - b320 = O(X2)~

B.9. Behavior of (3;fxwyz(0) — b311)

Apply one of the triquintic constraints at (1, 0, 0) to get

34 Ps

_— =2b 6b311 = 1,0,0). B.23
9x20ydz ‘(1,0’0) 211 + 6b311 = frxyz( ) ( )

Expand fiy(1, 0, 0) about the origin as

fxxyz(ls 0,0)= fxxyz(o) +fxxxyz(0) + O(Xz)v (B.24)
and use the fact that 2by11 = fuy(0) to get
1
b3 = ; xxxyz(o) + O(X2)~ (B.25)
Thus,

1
afxxxyz(o) - b311 = O(X2)~
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