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a b s t r a c t

This paper develops a local triquintic interpolation method for a function defined over
a unit cube mesh element. The resulting polynomial interpolant is isotropic and has
global C2 continuity. The triquintic polynomial coefficients are related to the function
and its derivatives at the eight corners of a mesh element by an invertible square matrix
of rank 216. The proposed method is an extension of a previously developed tricubic
interpolation scheme with global C1 continuity.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tricubic interpolation have been used very successfully in a range of fields, including ocean dynamics [1], plasma
ynamics [2], image processing [3], particle physics [4], computational chemistry [5–7] and structural biology [8]. Lekien
nd Marsden (LM) [9] developed an isotropic tricubic interpolation scheme, defined on a rectilinear mesh, that did not
eparate the interpolant into a tensor product of three one-dimensional polynomials. Compared to the tensor product
pproach, the method due to LM has a reduced computational cost and provides easy access to more accurate derivatives.
ekien and Marsden also showed that their method has global C1 continuity but cannot achieve global C2 continuity. Thus,
the interpolants for two adjacent meshes have the same function and first partial derivative values at the common face.

There is a need for higher order interpolants with a concomitant increase in smoothness. For example, it has been
observed that, in particle simulations, the smoothness of the tricubic interpolation has an effect on the accuracy of the
dynamics [2,6,7]. Additionally, in applications where second order derivatives of the interpolated kernel are required, such
as in molecular dynamics simulations with dipoles, tricubic interpolation will not be very effective because of the lack of
global C2 continuity.

This paper is a response to the need for higher order nontensorial interpolants. A search of the literature shows that
triquintic interpolation has been implemented in cosmological simulations [10] and in fracture mechanics [11]. However,
neither of these two works provide details about their implementation nor a study of the continuity and convergence
properties of their interpolator. We extend the work of LM to systematically develop a triquintic interpolation method
that is also isotropic. We prove that the method is globally C2 continuous but lacks global C3 continuity. We also prove
that for a cubic mesh element of length x, the error for the tricubic interpolant decays uniformly as O(x4) while the error
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for the triquintic interpolant decays uniformly as O(x6). Finally, we provide numerical evidence of the decay rate of the
errors and the accuracy of the tricubic and triquintic interpolations.

The paper is organized as follows. In Section 2 we describe the tricubic interpolation method developed by Lekien
and Marsden [9]. We develop the triquintic interpolation method in Section 3. In Section 4, we prove that the triquintic
method is globally C2 continues and that it lacks global C3 continuity. We derive the convergence rate of the interpolants
supported by numerical evidence in Section 5 and summarize our conclusions in Section 6.

2. Tricubic interpolation

Let the function f be defined over a three dimensional rectilinear mesh. Then f is interpolated on and inside the unit
cube mesh element (represented in Fig. 1) by the polynomial

P(x, y, z) =

3∑
i,j,k=0

aijkxiyjzk = αTµ, (1)

where the 64 unknown coefficients aijk are ordered into a vector α by defining

α1+i+4j+16k = aijk, i, j, k = 0, 1, 2, 3, (2)

and the monomials xiyjzk are ordered into the vector µ through a similar definition

µ1+i+4j+16k = xiyjz j, i, j, k = 0, 1, 2, 3. (3)

To determine the 64 coefficients aijk, LM enforced the following 8 linearly independent constraints{
P = f ,

∂P
∂x

=
∂ f
∂x

,
∂P
∂y

=
∂ f
∂y

,
∂P
∂z

=
∂ f
∂z

, (4)

∂2P
∂x∂y

=
∂2f
∂x∂y

,
∂2P
∂x∂z

=
∂2f
∂x∂z

,
∂2P
∂y∂z

=
∂2f
∂y∂z

,
∂3P

∂x∂y∂z
=

∂3f
∂x∂y∂z

}
,

t the eight vertices of the unit cube to generate a full rank sparse linear system

Bα = b. (5)

ere B is the 64 × 64 invertible coefficient matrix generated by applying the constraints to the polynomial and b is
obtained from applying the constraints to the function. This choice of constraints is the only set that yields an isotropic
interpolant with global C1 continuity. The coefficient vector is computed explicitly as α = B−1b. The matrix B−1 is
ndependent of the function being interpolated and can be stored to be reused for different evaluation points within
he mesh and for different functions. This feature is the main reason why the LM tricubic has less computational cost
ompared to the tensor product version.

. Triquintic interpolation

The triquintic interpolant is defined over the same unit cube, depicted in Fig. 1, as the tricubic. A function f is
represented locally on and inside the unit cube by the polynomial

P(x, y, z) =

5∑
i,j,k=0

aijkxiyjzk = αTµ. (6)

The elements of the vector α are given by

α1+i+6j+36k = aijk, i, j, k = 0, 1, 2, 3, 4, 5, (7)

and the elements of the vector µ are similarly ordered as

µ1+i+6j+36k = xiyjzk, i, j, k = 0, 1, 2, 3, 4, 5. (8)

We need 216 linearly independent constraints to determine the 216 coefficients aijk. Following LM [9], our constraints
will be defined at the eight vertices of the unit cube. Thus we require 27 constraints repeated at each vertex. We would
like the interpolant to be isotropic and to achieve global C2 continuity.
2
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Fig. 1. The unit cube mesh element.

.1. Constraints for triquintic interpolation

Because we want the interpolant to be at least globally C2 continuous, the function and all its first and second
derivatives must agree with the polynomial at the vertices of the cube which leads to the 10 constraints{

P = f ,
∂P
∂x

=
∂ f
∂x

,
∂P
∂y

=
∂ f
∂y

,
∂P
∂z

=
∂ f
∂z

, (9)

∂2P
∂x2

=
∂2f
∂x2

,
∂2P
∂x∂y

=
∂2f
∂x∂y

,
∂2P
∂x∂z

=
∂2f
∂x∂z

,
∂2P
∂y2

=
∂2f
∂y2

,
∂2P
∂y∂z

=
∂2f
∂y∂z

,
∂2P
∂z2

=
∂2f
∂z2

}
.

ext, we match the third derivatives. First, we note that along any axis, the triquintic interpolant is just a fifth degree
pline whose 6 coefficients are uniquely determined by the value of the function and its first and second derivatives at
he endpoints of the interval. As such, constraints involving derivatives of the form

∂νP
∂sν

, ν ≥ 3, s ∈ {x, y, z}, (10)

re dependent on the function and its first and second derivatives and thus are extraneous. As an example, consider the
nterpolant along the x-axis (y = z = 0),

P(x, 0, 0) =

5∑
i=0

ai00xi = a000 + a100x + a200x2 + a300x3 + a400x4 + a500x5, (11)

∂P
∂x

=

5∑
i=i

iai00xi−1
= a100 + 2a200x + 3a300x2 + 4a400x3 + 5a500x4, (12)

∂2P
∂x2

=

5∑
i=2

i(i − 1)ai00xi−2
= 2a200 + 6a300x + 12a400x2 + 20a500x3, (13)

∂3P
∂x3

=

5∑
i=3

i(i − 1)(i − 2)ai00xi−3
= 6a300 + 24a400x + 60a500x2. (14)

Evaluating Eqs. (11) to (14) at the left and right endpoints of the spline interval, P1 = (0, 0, 0) and P2 = (1, 0, 0)
respectively, we get

P
⏐⏐⏐ = a000,

∂P ⏐⏐⏐ = a100,
∂2P ⏐⏐⏐ = 2a200,

∂3P ⏐⏐⏐ = 6a300, (15)

(0,0,0) ∂x (0,0,0) ∂x2 (0,0,0) ∂x3 (0,0,0)

3
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P
⏐⏐⏐
(1,0,0)

= a000 + a100 + a200 + a300 + a400 + a500, (16)

∂P
∂x

⏐⏐⏐
(1,0,0)

= a100 + 2a200 + 3a300 + 4a400 + 5a500, (17)

∂2P
∂x2

⏐⏐⏐
(1,0,0)

= 2a200 + 6a300 + 12a400 + 20a500, (18)

∂3P
∂x3

⏐⏐⏐
(1,0,0)

= 6a300 + 24a400 + 60a500. (19)

e observe that

∂3P
∂x3

⏐⏐⏐
(0,0,0)

= − 60P
⏐⏐⏐
(0,0,0)

+ 60P
⏐⏐⏐
(1,0,0)

− 36
∂P
∂x

⏐⏐⏐
(0,0,0)

− 24
∂P
∂x

⏐⏐⏐
(1,0,0)

(20)

− 9
∂2P
∂x2

⏐⏐⏐
(0,0,0)

+ 3
∂2P
∂x2

⏐⏐⏐
(1,0,0)

,

and

∂3P
∂x3

⏐⏐⏐
(1,0,0)

= − 60P
⏐⏐⏐
(0,0,0)

+ 60P
⏐⏐⏐
(1,0,0)

− 24
∂P
∂x

⏐⏐⏐
(0,0,0)

− 36
∂P
∂x

⏐⏐⏐
(1,0,0)

(21)

− 3
∂2P
∂x2

⏐⏐⏐
(0,0,0)

+ 9
∂2P
∂x2

⏐⏐⏐
(1,0,0)

,

thus we omit the constraint ∂3P
∂x3

=
∂3f
∂x3

. Similarly, by symmetry, we omit the constraints ∂3P
∂y3

=
∂3f
∂y3

and ∂3P
∂z3

=
∂3f
∂z3

. The
emaining set of third derivatives provide the 7 constraints{ ∂3P

∂x2∂y
=

∂3f
∂x2∂y

,
∂3P

∂x2∂z
=

∂3f
∂x2∂z

,
∂3P

∂x∂y2
=

∂3f
∂x∂y2

, (22)

∂3P
∂x∂y∂z

=
∂3f

∂x∂y∂z
,

∂3P
∂y2∂z

=
∂3f

∂y2∂z
,

∂3P
∂x∂z2

=
∂3f

∂x∂z2
,

∂3P
∂y∂z2

=
∂3f

∂y∂z2

}
,

hich are invariant under a rotation of the axis and thus maintain the isotropic property. The final 10 constraints are
iven by the fourth, fifth and sixth order derivatives which do not involve derivatives of the form given in Eq. (10). These
0 constraints are{ ∂4P

∂x2∂y2
=

∂4f
∂x2∂y2

,
∂4P

∂x2∂z2
=

∂4f
∂x2∂z2

,
∂4P

∂y2∂z2
=

∂4f
∂y2∂z2

, (23)

∂4P
∂x2∂y∂z

=
∂4f

∂x2∂y∂z
,

∂4P
∂x∂y2∂z

=
∂4f

∂x∂y2∂z
,

∂4P
∂x∂y∂z2

=
∂4f

∂x∂y∂z2

}
,

{ ∂5P
∂x2∂y2∂z

=
∂5f

∂x2∂y2∂z
,

∂5P
∂x2∂y∂z2

=
∂5f

∂x2∂y∂z2
,

∂5P
∂x∂y2∂z2

=
∂5f

∂x∂y2∂z2

}
, (24)

nd { ∂6P
∂x2∂y2∂z2

=
∂5f

∂x2∂y2∂z2

}
. (25)

These last 10 constraints are also invariant under axis rotation, thus the interpolant is isotropic.

3.2. The triquintic linear system

To determine the 216 coefficients, the 27 constraints are enforced at the eight vertices of the cube, P1, . . . , P8 to
generate the full rank system defined in Eq. (5). We order the elements b in vector b, and hence the rows of matrix
i

4
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Fig. 2. Adjacent mesh elements.

B, by defining

bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (Pi), 1 ≤ i ≤ 8,
∂2f (Pi−72)

∂z2
, 73 ≤ i ≤ 80,

∂4f (Pi−144)
∂x2∂z2

, 145 ≤ i ≤ 152

∂ f (Pi−8)
∂x

, 9 ≤ i ≤ 16,
∂3f (Pi−80)

∂x2∂y
, 81 ≤ i ≤ 88,

∂4f (Pi−152)
∂y2∂z2

, 153 ≤ i ≤ 160

∂ f (Pi−16)
∂y

, 17 ≤ i ≤ 24,
∂3f (Pi−88),

∂x2∂z
, 89 ≤ i ≤ 96,

∂4f (Pi−160)
∂x2∂y∂z

, 161 ≤ i ≤ 168

∂ f (Pi−24)
∂z

, 25 ≤ i ≤ 32,
∂3f (Pi−96)

∂x∂y2
, 97 ≤ i ≤ 104,

∂4f (Pi−168)
∂x∂y2∂z

, 169 ≤ i ≤ 176

∂2f (Pi−32)
∂x2

, 33 ≤ i ≤ 40,
∂3f (Pi−104)

∂x∂y∂z
, 105 ≤ i ≤ 112,

∂4f (Pi−176)
∂x∂y∂z2

, 177 ≤ i ≤ 184

∂2f (Pi−40)
∂x∂y

, 41 ≤ i ≤ 48,
∂3f (Pi−112)

∂y2∂z
, 113 ≤ i ≤ 120,

∂5f (Pi−184)
∂x2∂y2∂z

, 185 ≤ i ≤ 192

∂2f (Pi−48)
∂x∂z

, 49 ≤ i ≤ 56,
∂3f (Pi−120)

∂x∂z2
, 121 ≤ i ≤ 128,

∂5f (Pi−192)
∂x2∂y∂z2

, 193 ≤ i ≤ 200

∂2f (Pi−56)
∂y2

, 57 ≤ i ≤ 64,
∂3f (Pi−128)

∂y∂z2
, 129 ≤ i ≤ 136,

∂5f (Pi−200)
∂x∂y2∂z2

, 201 ≤ i ≤ 208

∂2f (Pi−64)
∂y∂z

, 65 ≤ i ≤ 72,
∂4f (Pi−136)

∂x2∂y2
, 137 ≤ i ≤ 144,

∂6f (Pi−208)
∂x2∂y2∂z2

, 209 ≤ i ≤ 216

(26)

We solve for the coefficients as α = B−1b and the polynomial defined in Eq. (6) becomes

P(x, y, z) = bT (B−1)T µ. (27)

The matrix B−1 is sparse with 9261 non-zero elements. Because the matrix depends only on the unit cube mesh and not
on the function being interpolated, it is stored and reused. The scaled matrix 8B−1 is available online [12].

4. Smoothness property of the isotropic triquintic interpolant

Now, we study the smoothness property of the triquintic interpolant. First, we prove that the interpolant has global C2

ontinuity. Then we show that global C3 continuity does not hold for the triquintic interpolant. The triquintic polynomial
interpolant P(x, yz) is C∞ inside any mesh element and as such, its global smoothness is determined by the smoothness
properties at the boundary of each mesh element. Following LM, we will focus our analysis on the common boundary(face)
(v1, v3, v4, v2) between two adjacent mesh elements in Fig. 2. By symmetry, the analysis will apply to the other faces.

4.1. Proof of global C2 continuity

Lemma 1. The triquintic interpolant P is everywhere continuous.
5
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Proof. Consider the adjacent mesh elements in Fig. 2 and their boundary (v1, v3, v4, v2). Our goal is to show that at
he boundary (v1, v3, v4, v2), the interpolant in the left mesh element, PL, is equal to the interpolant in the right mesh
lement, PR, which is sufficient to prove continuity across the boundary.
For PL, x = 1 at the boundary, thus

PL(1, y, z) =

5∑
j,k=0

(
5∑

i=0

aijk

)
yjzk =

(
αL)T µL, (28)

here the elements of vector αL are ordered as

αL
1+j+6k =

5∑
i=0

aijk, j, k = 0, 1, 2, 3, 4, 5, (29)

nd the elements of vector µL are similarly ordered as

µL
1+j+6k = yjzk, j, k = 0, 1, 2, 3, 4, 5. (30)

or PR, x = 0 at the boundary, hence

PR(0, y, z) =

5∑
j,k=0

a0jkyjzk =
(
αR)T µR, (31)

ith the elements of vectors αR and µR ordered as

αR
1+j+6k = a0jk, j, k = 0, 1, 2, 3, 4, 5, (32)

nd

µR
1+j+6k = yjzk, j, k = 0, 1, 2, 3, 4, 5, (33)

espectively. Now notice that µL
= µR, thus to show that PL

= PR on the boundary, we only need to show that αL
= αR.

e solve for αL from the linear system

BLαL
= bL, (34)

nd for αR from the linear system

BRαR
= bR. (35)

t the four vertices {v1, v2, v3, v4}, we enforce the subset of the original 27 set of constraints

{
P = f ,

∂P
∂y

=
∂ f
∂y

,
∂P
∂z

=
∂ f
∂z

,
∂2P
∂y2

=
∂2f
∂y2

,
∂2P
∂y∂z

=
∂2f
∂y∂z

, (36)

∂2P
∂z2

=
∂2f
∂z2

,
∂3P

∂y2∂z
=

∂3f
∂y2∂z

,
∂3P

∂y∂z2
=

∂3f
∂y∂z2

,
∂4P

∂y2∂z2
=

∂4f
∂y2∂z2

}
.

hich do not involve derivatives in x. These 9 constraints remain linearly independent since the larger set is linearly
independent [13]. Because µL

= µR, and the constraints are the same for both PL and PR, the coefficient matrices BL and
BR in Eqs. (34) and (35) respectively, are the same (see Ref. [14] for the coefficient matrix). In addition, the right-hand
6
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a

P

a

a

P

L

sides bL and bR depend only on the data f , as such

bL
= bR

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (vi), 1 ≤ i ≤ 4
∂2f
∂z2

(vi−20), 21 ≤ i ≤ 24
∂ f
∂y

(vi−4), 5 ≤ i ≤ 8

∂3f
∂y2∂z

(vi−24), 25 ≤ i ≤ 28

∂ f
∂z

(vi−8), 9 ≤ i ≤ 12

∂3f
∂y∂z2

(vi−28), 29 ≤ i ≤ 32

∂2f
∂y2

(vi−12), 13 ≤ i ≤ 16

∂4f
∂y2∂z2

(vi−32), 33 ≤ i ≤ 36

∂2f
∂y∂z

(vi−16), 17 ≤ i ≤ 20

(37)

It follows then that

αL
=
(
BL)−1 bL

=
(
BR)−1 bR

= αR, (38)

hence PL
= PR and thus the interpolant is continuous across the boundary. Similar arguments for y and z, lead to the

conclusion that the interpolant is continuous everywhere. □

Lemma 2. Derivatives of the form

∂γ+νP
∂yγ ∂zν

, γ + ν = 1, 2, 3, 4, 5, 6,

re continuous on the mesh element boundaries perpendicular to the x-axis.

roof. From Lemma 1, PL
= PR on the boundary, (v1, v3, v4, v2). Since the interpolants are polynomials in y and z, this

means that their derivatives match to any order on the boundary. But (v1, v3, v4, v2) is an arbitrary boundary perpendicular
to the x-axis, thus,

∂γ+νPL

∂yγ ∂zν
=

∂γ+νPR

∂yγ ∂zν
, for γ + ν = 1, 2, 3, 4, 5, 6, (39)

on mesh boundaries perpendicular to the x-axis. □

Corollary 2.1. Derivatives of the form

∂γ+νP
∂xγ ∂yν

, γ + ν = 1, 2, 3, 4, 5, 6,

re continuous on the mesh element boundaries perpendicular to the z-axis while derivatives of the form

∂γ+νP
∂xγ ∂zν

, γ + ν = 1, 2, 3, 4, 5, 6,

re continuous on the mesh element boundaries perpendicular to the y-axis.

roof. The corollary follows from Lemma 1 and from Lemma 2 by symmetry. □

emma 3. The polynomial ∂P
∂x is continuous on the boundary (v1, v3, v4, v2).

Proof. Just as in the proof of Lemma 1, it suffices to show that ∂PL

∂x (1, y, z) =
∂PR

∂x (0, y, z). We start by differentiating P
with respect to x to get

∂P
∂x

(x, y, z) =

5∑ 5∑
iaijkxi−1yjzk. (40)
j,k=0 i=1

7
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On the boundary,

∂PL

∂x
(1, y, z) =

5∑
j,k=0

(
5∑

i=1

iaijk

)
yjzk =

(
αL)T µL, (41)

where

αL
1+j+6k =

5∑
i=1

iaijk, j, k = 0, 1, 2, 3, 4, 5, (42)

nd

∂PR

∂x
(0, y, z) =

5∑
j,k=0

a1jk yjzk =
(
αR)T µR, (43)

ith

αR
1+j+6k = a1jk, j, k = 0, 1, 2, 3, 4, 5, (44)

nd

µL
1+j+6k = µR

1+j+6k = yjzk, j, k = 0, 1, 2, 3, 4, 5. (45)

gain, we have µL
= µR, hence we only need to show that αL

= αR. At the four vertices {v1, v2, v3, v4}, we enforce the
ollowing subset of the original set of constraints{ ∂P

∂x
=

∂ f
∂x

,
∂2P
∂x∂y

=
∂2f
∂x∂y

,
∂2P
∂x∂z

=
∂2f
∂x∂z

,
∂3P

∂x∂y2
=

∂3f
∂x∂y2

,
∂3P

∂x∂y∂z
=

∂3f
∂x∂y∂z

, (46)

∂3P
∂x∂z2

=
∂3f

∂x∂z2
,

∂4P
∂x∂y2∂z

=
∂4f

∂x∂y2∂z
,

∂4P
∂x∂y∂z2

=
∂4f

∂x∂y∂z2
,

∂5P
∂x∂y2∂z2

=
∂5f

∂x∂y2∂z2

}
.

hich involve just a single derivative in x. This leads to the same coefficient matrix BL
= BR for linear systems for αL and

R and the same right-hand sides

bL
= bR

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f
∂x

(vi), 1 ≤ i ≤ 4

∂3f
∂x∂z2

(vi−20), 21 ≤ i ≤ 24

∂2f
∂x∂y

(vi−4), 5 ≤ i ≤ 8

∂4f
∂x∂y2∂z

(vi−24), 25 ≤ i ≤ 28

∂2f
∂x∂z

(vi−8), 9 ≤ i ≤ 12

∂4f
∂x∂y∂z2

(vi−28), 29 ≤ i ≤ 32

∂3f
∂x∂y2

(vi−12), 13 ≤ i ≤ 16

∂5f
∂x∂y2∂z2

(vi−32), 33 ≤ i ≤ 36

∂3f
∂x∂y∂z

(vi−16), 17 ≤ i ≤ 20

(47)

hus, αL
= αR, which implies that ∂PL

∂x (1, y, z) =
∂PR

∂x (0, y, z) and hence ∂P
∂x is continuous on the boundary (v1, v3,

v4, v2). □

Corollary 3.2. The polynomial ∂P
∂s , s ∈ {x, y, z} is continuous on mesh boundaries perpendicular to the s-axis.

Proof. From Lemma 3 ∂P
∂x is continuous on the boundary (v1, v3, v4, v2). The boundary is an arbitrary boundary

erpendicular to the x-axis, thus ∂P
∂x is continuous on any mesh boundary perpendicular to the x-axis. Then, by symmetry

nd Lemma 3, ∂P
∂y and ∂P

∂z are continuous on any mesh boundary perpendicular to the y and z-axes respectively. □

heorem 4 (Global C1 Continuity). The triquintic interpolant P is C1 continuous everywhere.
8
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Proof. From Corollaries 3.2 and 2.1, the first derivatives of P are continuous on any mesh boundary perpendicular to the
, y and z axes, thus P is everywhere C1 continuous. □

emma 5. The derivatives

∂2P
∂x∂y

and
∂2P
∂x∂z

are continuous on mesh boundaries perpendicular to the x-axis.

Proof. From Lemma 3 and Corollary 3.2, ∂P
∂x is a polynomial in y and z and continuous on mesh boundaries perpendicular

to the x-axis. Thus all derivatives in y and z are also continuous on these boundaries. Specifically, ∂2P
∂x∂y and ∂2P

∂x∂z are
continuous on mesh boundaries perpendicular to the x-axis. □

Corollary 5.1. The derivatives

∂2P
∂x∂y

and
∂2P
∂y∂z

are continuous on mesh boundaries perpendicular to the y-axis and

∂2P
∂x∂z

and
∂2P
∂y∂z

are continuous on mesh boundaries perpendicular to the z-axis.

Proof. The corollary follows from Lemma 5 and symmetry. □

Lemma 6. The mixed second derivatives are globally continuous.

Proof. Lemma 2, Corollary 2.1, Lemma 5 and Corollary 5.1 together prove that the mixed derivatives are continuous on
all boundaries and hence are globally continuous. □

Lemma 7. The polynomial ∂2P
∂x2

is continuous on the boundary (v1, v3, v4, v2).

Proof. The proof is similar to that for Lemmas 1 and 3. It is sufficient to show that ∂2PL

∂x2
(1, y, z) =

∂2PR

∂x2
(0, y, z). Note that

∂2P
∂x2

(x, y, z) =

5∑
j,k=0

5∑
2=1

i(i − 1)aijkxi−2yjzk. (48)

n the boundary,

∂2PL

∂2x
(1, y, z) =

5∑
j,k=0

(
5∑

i=2

i(i − 1)aijk

)
yjzk =

(
αL)T µL, (49)

where

αL
1+j+6k =

5∑
i=2

i(i − 1)aijk, j, k = 0, 1, 2, 3, 4, 5, (50)

and

∂2PR

∂x2
(0, y, z) =

5∑
j,k=0

2a2jk yjzk =
(
αR)T µR, (51)

ith

αR
1+j+6k = 2a2jk, j, k = 0, 1, 2, 3, 4, 5, (52)

nd

µL
= µR

= yjzk, j, k = 0, 1, 2, 3, 4, 5. (53)
1+j+6k 1+j+6k

9
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Again, we have µL
= µR, hence we only need to show that αL

= αR. At the four vertices {v1, v2, v3, v4}, we enforce the
ollowing subset of the original set of constraints{ ∂2P

∂x2
=

∂2f
∂x2

,
∂3P

∂x2∂y
=

∂3f
∂x2∂y

,
∂3P

∂x2∂z
=

∂3f
∂x2∂z

,
∂4P

∂x2∂y2
=

∂4f
∂x2∂y2

,
∂4P

∂x2∂y∂z
=

∂4f
∂x2∂y∂z

, (54)

∂4P
∂x2∂z2

=
∂4f

∂x2∂z2
,

∂5P
∂x2∂y2∂z

=
∂5f

∂x2∂y2∂z
,

∂5P
∂x2∂y∂z2

=
∂5f

∂x2∂y∂z2
,

∂6P
∂x2∂y2∂z2

=
∂6f

∂x2∂y2∂z2

}
.

hich involve a double derivative in x. This leads to the same coefficient matrix BL
= BR for linear systems for αL and αR

nd the same right-hand sides

bL
= bR

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2f
∂x2

(vi), 1 ≤ i ≤ 4

∂4f
∂x2∂z2

(vi−20), 21 ≤ i ≤ 24

∂3f
∂x2∂y

(vi−4), 5 ≤ i ≤ 8

∂5f
∂x2∂y2∂z

(vi−24), 25 ≤ i ≤ 28

∂3f
∂x2∂z

(vi−8), 9 ≤ i ≤ 12

∂5f
∂x2∂y∂z2

(vi−28), 29 ≤ i ≤ 32

∂4f
∂x2∂y2

(vi−12), 13 ≤ i ≤ 16

∂6f
∂x2∂y2∂z2

(vi−32), 33 ≤ i ≤ 36

∂4f
∂x2∂y∂z

(vi−16), 17 ≤ i ≤ 20

(55)

hus, αL
= αR, which implies that ∂2PL

∂x2
(1, y, z) =

∂2PR

∂x2
(0, y, z) and hence ∂2P

∂x2
is continuous on the boundary

(v1, v3, v4, v2). □

Lemma 8. The polynomial ∂2P
∂x2

is continuous everywhere.

Proof. Lemma 7 shows that ∂2P
∂x2

is continuous on faces perpendicular to the x-axis. Corollary 2.1 shows that ∂2P
∂x2

is continuous on faces perpendicular to the y and z-axis. Within a mesh element, P is C∞, thus ∂2P
∂x2

is continuous
verywhere. □

heorem 9 (Global C2 Continuity). The triquintic interpolant P is C2 continuous everywhere.

Proof. From Lemma 8 and symmetry, ∂2P
∂x2

, ∂2P
∂y2

and ∂2P
∂z2

are continuous everywhere. And the mixed second derivatives
are continuous everywhere, according to Lemma 6. Thus, P has global C2 continuity. □

4.2. Global C3 continuity does not hold

Theorem 10. The triquintic interpolant P is not C3 continuous everywhere.

Proof. We prove by contradiction. Consider the interpolant along the x-axis (y = z = 0). Without loss of generality, we
focus on two adjacent mesh elements on the interval [0, 2] where the left mesh is on [0, 1] and the right mesh is on
[1, 2]. Define the left interpolant as

PL(x, 0, 0) = a000 + a100x + a200x2 + a300x3 + a400x4 + a500x5, (56)

and the right interpolant as

PR(x, 0, 0) = b000 + b100x + b200x2 + b300x3 + b400x4 + b500x5. (57)

The left and right interpolants are fully determined by the values of the function and its first and second derivatives in x
at the endpoints of the intervals [0, 1] and [1, 2] respectively. We find that

a000 = f (0, 0, 0), a100 = fx(0, 0, 0), a200 =
1
fxx(0, 0, 0), (58)
2
10



H.A. Boateng and K. Bradach Journal of Computational and Applied Mathematics 430 (2023) 115254

w

F

T

D

a

[a300
a400
a500

]
=

[ 10 −4 1/2
−15 7 −1
6 −3 1/2

]⎡⎣f (1, 0, 0) − f (0, 0, 0) − fx(0, 0, 0) −
1
2 fxx(0, 0, 0)

fx(1, 0, 0) − fx(0, 0, 0) − fxx(0, 0, 0)
fxx(1, 0, 0) − fxx(0, 0, 0)

⎤⎦ , (59)

b000 = f (1, 0, 0), b100 = fx(1, 0, 0), a200 =
1
2
fxx(1, 0, 0), (60)[b300

b400
b500

]
=

[ 10 −4 1/2
−15 7 −1
6 −3 1/2

]⎡⎣f (2, 0, 0) − f (1, 0, 0) − fx(1, 0, 0) −
1
2 fxx(1, 0, 0)

fx(2, 0, 0) − fx(1, 0, 0) − fxx(1, 0, 0)
fxx(2, 0, 0) − fxx(1, 0, 0)

⎤⎦ . (61)

Assume that the interpolant is C3 continuous everywhere. Then, specifically,

∂3PL

∂x3
(1, 0, 0) =

∂3PR

∂x3
(0, 0, 0), (62)

hich implies that,

a300 + 4a400 + 5a500 = b300. (63)

rom Eq. (59),

a300 + 4a400 + 5a500 = 10(f (1, 0, 0) − f (0, 0, 0)) (64)

−4fx(0, 0, 0) − 6fx(1, 0, 0) −
1
2
fxx(0, 0, 0) +

3
2
fxx(1, 0, 0),

and from Eq. (61),

b300 = 10(f (2, 0, 0) − f (1, 0, 0)) − 6fx(1, 0, 0) − 4fx(2, 0, 0) −
19
2

fxx(1, 0, 0) +
1
2
fxx(2, 0, 0). (65)

Note that because the interpolant is C2 continuous everywhere,

a000 = b000, a100 = b100, and a200 = b200. (66)

hen the consequence of Eqs. (58), (60) and (63) is that, for every interpolated function,

4(fx(2, 0, 0) − fx(0, 0, 0)) −
1
2
(fxx(2, 0, 0) − 21fxx(0, 0, 0)) = 10(f (2, 0, 0) − f (0, 0, 0)), (67)

which is false. Thus, the triquintic is not globally C3 continuous. □

5. Error analysis and numerical results

First, we prove that for the tricubic interpolant, the uniform error decays as a quartic and for the triquintic interpolant,
the error decays as a sextic. Along the way, we show that the pointwise error decay for the tricubic is quadratic and for
the triquintic it is cubic.

5.1. Error analysis

Theorem 11. For a cubic mesh of length x, the error for the tricubic interpolant decays uniformly as O(x4) and the error for
the triquintic interpolant decays uniformly as O(x6).

Proof. Let f (x, y, z) ∈ C∞ be the function to be interpolated. Then, the Taylor series for f centered at the origin 0 = (0, 0, 0)
is

f (x, y, z) =

∞∑
i,j,k=0

1
i!j!k!

∂ i+j+kf
∂xiyjzk

⏐⏐⏐
(0,0,0)

xiyjzk. (68)

efine the tricubic interpolant as

P3(x, y, z) =

3∑
i,j,k=0

aijkxiyjzk, (69)

nd the triquintic interpolant as

P5(x, y, z) =

5∑
bijkxiyjzk. (70)
i,j,k=0

11
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Apply the tricubic constraints given in Eq. (4) at (0, 0, 0) to compute 8 of the coefficients of P3. Similarly, apply the
triquintic contraints in (9), (22), (23), (24) and (25) at (0, 0, 0) to compute 27 of the coefficients of P5. We find that

aijk =
∂ i+j+kf

∂xi∂yj∂zk

⏐⏐⏐
(0,0,0)

, i, j, k = 0, 1, (71)

bi,j,k =
1

i!j!k!
∂ i+j+kf

∂xi∂yj∂zk

⏐⏐⏐
(0,0,0)

, i, j, k = 0, 1, 2. (72)

hen the residual for the tricubic is given as

r3(x, y, z) = f (x, y, z) − P3(x, y, z), (73)

=
1
2

(
(fxx(0) − 2a200)x2 + (fyy(0) − 2a020)y2 + (fzz − 2a002)z2

)
+

∑
i+j+k=3

(
1

i!j!k!
∂ i+j+kf
∂xiyjzk

⏐⏐⏐
(0,0,0)

− aijk

)
xiyjzk + O(x4),

nd the associated uniform error is defined as

max
x

|r3(x, y, z)| = max
x

|f (x, y, z) − P3(x, y, z)|. (74)

ote that the coefficient

a200 = 3f (1, 0, 0) − 3f (0, 0, 0) − 2fx(0, 0, 0) − fx(1, 0, 0), (75)

hich is not necessarily equal to 1
2 fxx(0). Similarly, a020 and a002 are not necessarily equal to 1

2 fyy(0) and
1
2 fzz(0) respectively.

hus, the pointwise error in a tricubic interpolation given by

e3(x, y, z) = |f (x, y, z) − P3(x, y, z)| ,

=

⏐⏐⏐⏐12 ((fxx(0) − 2a200)x2 + (fyy(0) − 2a020)y2 + (fzz − 2a002)z2
)
+ · · ·

⏐⏐⏐⏐ , (76)

ecays quadratically.
To prove that the uniform error for the tricubic decays as O(x4), we need to show that, at a minimum, the coefficients

f the quadratic and cubic terms in r3(x, y, z) behave as O(x2) and O(x) respectively. We do this by expanding the function
alues such as in Eq. (75) around (0, 0, 0). In Appendix A, we show that

1
2!

fxx(0) − a200 = O(x3),
1
2!

fxxy(0) − a210 = O(x2),
1
3!

fxxx(0) − a300 = O(x3).

y symmetry, similar relationships hold for the other coefficients of the quadratic and cubic terms. Thus,

max
x

|f (x, y, z) − P3(x, y, z)| = O(x4), (77)

here we have also used a111 = fxyz(0) given by Eq. (71).
We follow similar arguments for the triquintic interpolant with the residual given as

r5(x, y, z) = f (x, y, z) − P5(x, y, z), (78)

=
1
6

(
(fxxx(0) − 6b300)x3 + (fyyy(0) − 6b030)y3 + (fzzz − 2b003)z3

)
+

∑
4≤i+j+k≤5

(
1

i!j!k!
∂ i+j+kf
∂xiyjzk

⏐⏐⏐
(0,0,0)

− aijk

)
xiyjzk + O(x6),

nd

max
x

|r5(x, y, z)| = max
x

|f (x, y, z) − P5(x, y, z)|, (79)

efines the triquintic uniform error. Note that, Eq. (15) and Eq. (20), imply

b300 = 10(f (1, 0, 0) − f (0, 0, 0)) − 6fx(0, 0, 0) − 4fx(1, 0, 0) −
3
2
fxx(0, 0, 0) +

1
2
fxx(1, 0, 0), (80)

which is not necessarily equal to 1
6 fxxx(0). Similarly, b030 and b003 are not necessarily equal to 1

6 fyyy(0) and 1
6 fzzz(0)

espectively. Thus, the pointwise error in the triquintic interpolation given by

e5(x, y, z) = |f (x, y, z) − P5(x, y, z)| ,

=

⏐⏐⏐⏐1 ((fxxx(0) − 6b300)x3 + (fyy(0) − 6b030)y3 + (fzz − 6b003)z3
)
+ · · ·

⏐⏐⏐⏐ , (81)

6
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Fig. 3. Numerical evidence for decay rate of the pointwise errors for the tricubic and triquintic interpolants. The top plot is for f (x, y, z) and the
bottom plot is for g(x, y, z).

decays as a cubic.
We need to show that the coefficients of the cubic, quartic and quintic terms in r5(x, y, z) behave as O(x3), O(x2) and

O(x) respectively in order to prove that the error for the triquintic decays uniformly as O(x6). We do this by expanding
he function values, such as in Eq. (80) around (0, 0, 0). In Appendix B, we show that

1
3!

fxxx(0) − b300 = O(x4),

1
4!

fxxxx(0) − b400 = O(x4),
1
3!

fxxxy − b310 = O(x3),

1
5!

fxxxxx(0) − b500 = O(x4),
1
4!

fxxxxy(0) − b410 = O(x3),
1
3!

fxxxyy(0) − b320 = O(x2),

1
3!

fxxxyz(0) − b311 = O(x2).

Again, by symmetry, similar relationships hold for the other coefficients of the quadratic, cubic and quartic terms of
the residual. Thus,

max
x

|f (x, y, z) − P5(x, y, z)| = O(x6), (82)

here we have also used the values for bijk given by Eq. (72). □

5.2. Numerical results

Fig. 3 provides numerical evidence for pointwise errors given in Eqs. (76) and (81) for f (x, y, z) =
1√

x2+y2+z2+0.1
(top

plot) and g(x, y, z) = (x2 + y2 + z2) · e−(x2+y2+z2) (bottom plot). The absolute errors are computed along the vector
r = γ

( 1
3 ,

1
3 ,

1
3

)
, where γ = 0 : 0.001 : 0.1. Fig. 3 is a log–log plot of the errors vs r = |r|. We see that the absolute error

or the tricubic, e3(x, y, z), matches y = C · r2 to support the conclusion in Eq. (76). Similarly, the triquintic absolute error,
5(x, y, z), matches y = C · r3, as predicted by Eq. (81).
Fig. 3 also shows that as expected, the triquintic interpolant is more accurate than the tricubic interpolant. Fig. 4

rovides further study of the comparative accuracy of the two interpolants. We plot the error for the interpolation of a
unction and its derivatives

{
∂x, ∂xy, ∂xyz

}
at 50 randomly generated points in the unit cube. Results are provided for the

ame two functions, f (x, y, z) (left column) and g(x, y, z) (right column). As expected, triquintic interpolation provides
higher accuracy for a function and its derivatives.

Table 1, compares the accuracy of the integrals of the interpolants for f (x, y, z) and g(x, y, z). We use MATLAB’s in-built
numerical quadrature function to compute

∫
[0,1]3 f dx and

∫
[0,1]3 g dx. The integral for the interpolants are computed as∫

[0,1]3
P dx =

n∑ ∫
[0,1]3

aijkxiyjzk dx =

n∑ aijk
(i + 1)(j + 1)(k + 1)

, (83)

i,j,k=0 i,j,k=0

13
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Fig. 4. Comparison of the error in the tricubic and triquintic interpolants for 2 functions and their derivatives. The left column is for f (x, y, z) and
he right column is for g(x, y, z).

Fig. 5. Numerical evidence for the decay rate of the uniform norm of the errors for the tricubic and triquintic interpolants for u(x, y, z) = (x2+y2+z2)3 .
he left column is uniform error for the tricubic and the right is the uniform error for the triquintic.

here n = 3 for the tricubic and n = 5 for the triquintic. Table 1 shows that the triquintic approximation of the integrals
s more accurate than the tricubic approximation.

Figs. 5 and 6 provide evidence for the uniform errors given in Eqs. (77) and (82) for the functions u(x, y, z) =

x2 + y2 + z2
)3 and v(x, y, z) =

(
x2 + y2 + z2

)4. The length of the cube x = 0.3 : 0.05 : 0.9. For each length of the
ube, the maximum norm of the residual is computed over 100 randomly generated points in the cube. In both Figs. 5
nd 6, we see good agreement with the decay rates given in Theorem 11.
14
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Table 1
Accuracy of integrals of the interpolants.
Interpolant

∫
[0,1]3 f (x) − P(x) dx

∫
[0,1]3 g(x) − P(x) dx

P3 0.128868208976672 0.010551038583430
P5 0.018646565877596 0.001756644668320

Fig. 6. Numerical evidence for the decay rate of the uniform norm of the errors for the tricubic and triquintic interpolants for v(x, y, z) = (x2+y2+z2)4 .
he left column is uniform error for the tricubic and the right is the uniform error for the triquintic.

Before we conclude, we note that as explained by Lekien and Marsden, even though the presentation has been
ocused on Cartesian grids, the development extends to rectilinear grids as well. For a rectilinear mesh unit [xmin, xmax]×
[ymin, ymax] × [zmin, zmax], the mesh unit is mapped to the unit cube via the transformation

T (x, y, z) =

(
x − xmin

∆x
,
y − ymin

∆y
,
z − zmin

∆z

)
= (x̄, ȳ, z̄), (84)

here ∆x = xmax − xmin, ∆y = ymax − ymin and ∆z = zmax − zmin. Then, the triquintic interpolant is defined as

P(x, y, z) =

5∑
i,j,k=0

aijkx̄iȳjz̄k. (85)

he elements of the right-hand side vector b defined in Eq. (26) are scaled accordingly as

∆xβ∆yγ ∆zν ∂β+γ+ν f
∂xβ∂yγ ∂zν

, β, γ , ν ∈ {0, 1, 2}. (86)

. Conclusions

This paper developed an isotropic triquintic interpolant and proved that the interpolant is C2 continuous everywhere.
he driver of the interpolation method is a 216 × 216 invertible matrix that relates the coefficients of the interpolant
o the function and its derivatives at the eight corners of a unit cube mesh element. We proved that the method is not
3 continuous globally and that the error decays as a cubic. Numerical tests were provided to support the analysis of
he convergence of the method. The advantages of the triquintic interpolant developed in this paper over the tricubic
nterpolant of Lekien and Marsden [9] are:

(1) The triquintic is C2 everywhere and thus has higher smoothness while the tricubic is globally C1.
(2) The triquintic is more accurate than the tricubic for approximating function values.
(3) The triquintic produces more accurate interpolation of higher order derivatives.

he disadvantage of the triquintic is that it requires up to 6th order derivatives of the interpolated function while the
ricubic requires only up to 3rd order derivatives. Additionally, the tricubic matrix is 64 × 64 while the triquintic matrix
15
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t

is 216 × 216. This disparity in matrix sizes will perhaps be an issue if the matrix–vector multiplication has to be done
many times. However, the best use case for both interpolants is when several values inside the unit cube need to be
interpolated. Then the coefficients of the interpolant are computed once by Eq. (5) and used repeatedly to interpolate all
the needed values. In this case, the difference in computational cost between the tricubic and triquintic interpolants are
negligible.
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Appendix A. Asymptotic behavior of coefficients of the tricubic interpolant residual

A.1. Behavior of
( 1
2! fxx(0) − a200

)
Eq. (75) defines

a200 = 3f (1, 0, 0) − 3f (0) − 2fx(0) − fx(1, 0, 0). (A.1)

xpand both f (1, 0, 0) and fx(1, 0, 0) as a Taylor series around 0 to get

f (1, 0, 0) = f (0) + fx(0) +
1
2
fxx(0) +

1
6
fxxx(0) + O(x4), (A.2)

fx(1, 0, 0) = fx(0) + fxx(0) +
1
2
fxxx(0) + O(x3). (A.3)

Then, put Eqs. (A.2) and (A.3) into Eq. (A.1), to get

a200 =
1
2!

fxx(0) + O(x3). (A.4)

Then we get,

1
2!

fxx(0) − a200 = O(x3).

A.2. Behavior of
( 1
2! fxxy(0) − a210

)
We apply one of the tricubic constraints from Eq. (4) to first evaluate

∂2P3

∂x∂y

⏐⏐⏐
(1,0,0)

= a110 + 2a210 = fxy(1, 0, 0). (A.5)

ecall, from Eq. (71), that a110 = fxy(0). Then,

a210 =
1
2

(
fxy(1, 0, 0) − fxy(0)

)
. (A.6)

xpand fxy(1, 0, 0) about the origin to get

fxy(1, 0, 0) = fxy(0) + fxxy(0) + O(x2). (A.7)

hen from Eqs. (A.6) and (A.7),

a210 =
1
2!

fxxy(0) + O(x2), (A.8)

hus,
1
fxxy(0) − a210 = O(x2).
2!
16
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A.3. Behavior of
( 1
3! fxxx(0) − a300

)
First note that

f (1, 0, 0) = f (0) + fx(0) + a200 + a300, (A.9)

and
∂ f
∂x

⏐⏐⏐
(1,0,0)

= fx(0) + 2a200 + 3a300 = fx(1, 0, 0). (A.10)

his implies that

a300 = fx(1, 0, 0) − 2f (1, 0, 0) + fx(0) + 2f (0). (A.11)

sing the expansions for f (1, 0, 0) and fx(1, 0, 0) in Eqs. (A.2) and (A.3) we see that

a300 =
1
3!

fxxx(0) + O(x3). (A.12)

hus,
1
3!

fxxx(0) − a300 = O(x3).

Appendix B. Asymptotic behavior of coefficients of the triquintic interpolant

B.1. Behavior of
( 1
3! fxxx(0) − b300

)
From the constraints for the triquintic interpolant, we find that

b300 = 10(f (1, 0, 0) − f (0, 0, 0)) − 6fx(0, 0, 0) − 4fx(1, 0, 0) −
3
2
fxx(0, 0, 0) +

1
2
fxx(1, 0, 0). (B.1)

Now, expand f (1, 0, 0), fx(1, 0, 0) and fxx(1, 0, 0) around (0, 0, 0) to get

f (1, 0, 0) = f (0) + fx(0) +
1
2
fxx(0) +

1
6
fxxx(0) +

1
24

fxxxx(0) +
1

120
fxxxxx(0) + O(x6), (B.2)

fx(1, 0, 0) = fx(0) + fxx(0) +
1
2
fxxx(0) +

1
6
fxxxx(0) +

1
24

fxxxxx(0) + O(x5), (B.3)

fxx(1, 0, 0) = fxx(0) + fxxx(0) +
1
2
fxxxx(0) +

1
6
fxxxxx(0) + O(x4). (B.4)

Put Eqs. (B.2), (B.3) and (B.4) into Eq. (B.1) to get

b300 =
1
3!

fxxx(0) + O(x4), (B.5)

hich shows that
1
3!

fxxx(0) − b300 = O(x4).

B.2. Formulas for the b400 and b500 terms

We apply two of the triquintic constraints at (1, 0, 0) to generate the equations
∂P5

∂x

⏐⏐⏐
(1,0,0)

= b100 + 2b200 + 3b300 + 4b400 + 5b500 = fx(1, 0, 0), (B.6)

∂2P5

∂x2

⏐⏐⏐
(1,0,0)

= 2b200 + 6b300 + 12b400 + 20b500 = fxx(1, 0, 0). (B.7)

We know from Eq. (72) that b100 = fx(0), 2b200 = fxx(0), thus Eqs. (B.6) and (B.7) imply that

b400 = fx(1, 0, 0) − fx(0) −
3
4
fxx(0) −

1
4
fxx(1, 0, 0) −

3
2
b300, (B.8)

nd

b500 =
1

(fxx(1, 0, 0) + 2fxx(0) − 3fx(1, 0, 0) + 3fx(0) + 3b300) . (B.9)

5

17
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a

B

B.3. Behavior of
( 1
4! fxxxx(0) − b400

)
We insert Eqs. (B.3), (B.4) and (B.5) in Eq. (B.8) to get

b400 =
1
4!

fxxxx(0) + O(x4). (B.10)

Thus,
1
4!

fxxxx(0) − b400 = O(x4).

B.4. Behavior of
( 1
5! fxxxx(0) − b400

)
We insert Eqs. (B.3), (B.4) and (B.5) in Eq. (B.9) to get

b500 =
1
5!

fxxxx(0) + O(x4). (B.11)

Thus,
1
5!

fxxxx(0) − b500 = O(x4).

B.5. Formulas for the b310 and b410 terms

We apply two of the triquintic constraints at (1, 0, 0) to generate the two equations

∂2P5

∂x∂y

⏐⏐⏐
(1,0,0)

= fxy(0) + 2b210 + 3b310 + 4b410 = fxy(1, 0, 0), (B.12)

∂3P5

∂x2∂y

⏐⏐⏐
(1,0,0)

= 2b210 + 6b310 + 12b410 = fxxy(1, 0, 0). (B.13)

Then using the fact that 2b210 = fxxy(0), we find that

b310 =
1
3

(
3fxy(1, 0, 0) − 3fxy(0) − fxxy(1, 0, 0) − 2fxxy(0)

)
, (B.14)

nd

b410 =
1
4

(
fxxy(1, 0, 0) − 2fxy(1, 0, 0) + 2fxy(0) + fxxy(0)

)
. (B.15)

.6. Behavior of
( 1
3! fxxxy(0) − b310

)
Now expand fxy(1, 0, 0) and fxxy(1, 0, 0) about the origin to get

fxy(1, 0, 0) = fxy(0) + fxxy(0) +
1
2
fxxxy(0) +

1
6
fxxxxy + O(x4), (B.16)

fxxy(1, 0, 0) = fxxy(0) + fxxxy(0) +
1
2
fxxxxy(0) + O(x3). (B.17)

Insert Eqs. (B.16) and (B.17) into (B.14) to get

b310 =
1
3!

fxxxy + O(x3). (B.18)

Thus,
1
3!

fxxxy(0) − b310 = O(x3).

B.7. Behavior of
( 1
4! fxxxxy(0) − b410

)
Insert Eqs. (B.16) and (B.17) into (B.15) to get

b410 =
1
4!

fxxxxy + O(x3). (B.19)

Thus,
1
fxxxxy(0) − b410 = O(x3).
4!
18
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E

a

B.8. Behavior of
( 1
3!2! fxxxyy(0) − b320

)
Apply one of the triquintic constraints at (1, 0, 0) to get

∂4P5

∂x2∂y2

⏐⏐⏐
(1,0,0)

= 4b220 + 12b320 = fxxyy(1, 0, 0). (B.20)

Expand fxxyy(1, 0, 0) about the origin as

fxxyy(1, 0, 0) = fxxyy(0) + fxxxyy(0) + O(x2), (B.21)

and use the fact that 4b220 = fxxyy(0) to get

b320 =
1

3!2!
fxxxyy(0) + O(x2). (B.22)

Thus,
1

3!2!
fxxxyy(0) − b320 = O(x2).

B.9. Behavior of
( 1
3! fxxxyz(0) − b311

)
Apply one of the triquintic constraints at (1, 0, 0) to get

∂4P5

∂x2∂y∂z

⏐⏐⏐
(1,0,0)

= 2b211 + 6b311 = fxxyz(1, 0, 0). (B.23)

xpand fxxyz(1, 0, 0) about the origin as

fxxyz(1, 0, 0) = fxxyz(0) + fxxxyz(0) + O(x2), (B.24)

nd use the fact that 2b211 = fxxyz(0) to get

b311 =
1
3!

fxxxyz(0) + O(x2). (B.25)

Thus,
1
3!

fxxxyz(0) − b311 = O(x2).
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