
The effect of global smoothness on the accuracy of treecodes

Henry A. Boateng1,∗, and Svetlana Tlupova2

1 Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA.
2 Department of Mathematics, Farmingdale State College, SUNY, Farmingdale, NY 11735,
USA.

Abstract. Treecode algorithms are widely used in evaluation of N-body pairwise interactions
in O(N) or O(N logN) operations. While they can provide high accuracy approximations, a
criticism leveled at the methods is that they lack global smoothness. In this work, we study
the effect of smoothness on the accuracy of treecodes by comparing three tricubic interpolation
based treecodes with differing smoothness properties: a global C1 continuous tricubic, and two
new tricubic interpolants, one that is globally C0 continuous and one that is discontinuous. We
present numerical results which show that higher smoothness leads to higher accuracy for prop-
erties dependent on the derivatives of the kernel, nevertheless the global C0 continuous and
discontinuous treecodes are competitive with the C1 continuous treecode. One advantage of the
discontinuous treecode over the C1 continuous is that, in addition to function evaluations, the
discontinuous treecode only requires evaluations of the first derivatives of the kernel while the
C1 continuous treecode requires evaluations up to third order derivatives. When the first deriva-
tives are computed using finite differences, the discontinuous version can be viewed as kernel
independent and of utility for a wider array of kernels with minimal effort.

AMS subject classifications: 70-08, 70-10, 76-04, 85-04, 65D99,
Key words: Fast summation, Treecode, Tricubic interpolation.

1 Introduction

The evaluation of sums of the form

φ(xm)=
N

∑
n=1
K(xm,yn) fn, m=1,...,M, (1.1)

is of interest in many applications in physics, chemistry, fluid dynamics, etc. Here {yn},n=1,...,N
is a set of particles with weights { fn}, and φ(x) is a potential (or force or velocity). The kernel
K(x,y) represents the pairwise interaction between a target particle x and a source particle y. The
kernel may be a scalar or a tensor, and it is understood that if the kernel is singular for x=y, then
the sum omits the n=m term.

The particle-particle interactions in equation (1.1) can be summed directly but that requires
O(MN) operations. This is a computationally intensive calculation when M,N are large, and
many fast summation techniques have been developed to reduce the cost. Most of these meth-
ods can be grouped into tree-based methods and particle-mesh methods. In particle-mesh meth-
ods, the particles are projected onto a uniform grid where the FFT or multigrid can be used (e.g.
P3M [20], particle-mesh Ewald [14], spectral Ewald [1], multilevel summation [19]).

∗Corresponding author. Email addresses: boateng@sfsu.edu (HA. Boateng), tlupovs@farmingdale.edu (S. Tlupova)

http://www.global-sci.com/ Global Science Preprint

2

In the tree-based approach, the particles are hierarchically partitioned into a tree structure,
and the particle-particle interactions in equation (1.1) are replaced with particle-cluster or cluster-
cluster approximations, and reduce the cost to O(N) [17, 18] or O(NlogN) [2]. The original
treecode [2] used a monopole far-field approximation, while the fast multipole method (FMM) [17,
18] improved on this by employing higher-order far-field and near-field approximations expressed
in terms of classical analytic multipole expansions. Later versions of the FMM used plane wave
expansions for the 3D Laplace kernel [10] and spherical Bessel function expansions for the Yukawa
potential [16]. Methods based on Cartesian Taylor expansions were also developed for some com-
mon kernels [3, 4, 12, 13, 24, 25, 28, 29]. These methods use analytic expansions specific to each
kernel. More recently, kernel-independent methods have been developed that only require kernel
evaluations and as such are applicable to more general kernel functions. Among these are the
kernel-independent FMM which uses equivalent particle distribution determined by solving lin-
ear systems [32, 33], a black-box FMM which uses polynomial interpolation at Chebyshev points
combined with SVD compression [15], and a kernel-independent treecode which uses barycen-
tric Langrange interpolation at Chebyshev points [30]. Another recent development is a treecode
based on barycentric Hermite polynomial interpolation [21] which requires third order derivatives
of the kernel at Chebyshev evaluation points. The black-box FMM [15], the barycentric Lagrange
interpolation [30] and the barycentric Hermite interpolation treecodes [21] all use a tensor product
of three one-dimensional polynomials to approximate the three-dimensional kernel function.

While treecodes can provide high accuracy approximations, the approximations lack global
continuity [27]. For example, in molecular dynamics (MD) simulations, the discontinuity can lead
to an energy drift when the treecode multipole expansion is low order [27]. Higher order expan-
sions resolve the issue of energy drift but at higher computational cost. In this paper, we seek to
understand any effect that the smoothness of the approximations may have on the accuracy of the
overall treecode algorithm. We do this by comparing treecodes based on tricubic interpolations
of different smoothness. Tricubic interpolation [23] is a method of local approximation of a func-
tion defined on a regular grid in three dimensions. The function is approximated within a unit
cube by a polynomial in the three spatial variables, with the unknown coefficients determined
by requiring the polynomial to match the function and its derivatives at points on and within
the unit cube. While tricubic interpolation is equivalent to a sequential application of three one-
dimensional cubic interpolants [23], this formulation is intrinsically three-dimensional, which has
better computational efficiency when the interpolant is used at multiple points inside each cube
element. Notably for this work, this formulation is highly advantageous when the derivatives of
the interpolated function are needed, because the tricubic polynomial can be easily differentiated
analytically.

We present a comparative study of O(NlogN) treecode methods that use tricubic interpolation
of different degrees of smoothness. In our previous work [6], we developed a treecode algorithm
based on a tricubic interpolant [23] with global C1 continuity in approximating the kernel. This
interpolant requires up to third order derivatives of the kernel. Here, we develop two new tricu-
bic interpolants, one with global C0 continuity and one that is discontinuous across the faces of
the cube. The latter has the advantage of only requiring the kernel and its first order derivatives.
We investigate the role the degree of smoothness in kernel interpolation may have on the accu-
racy of the derivative of the function φ in (1.1) when compared to the accuracy in φ itself. We
compare the Coulomb potential with its electric field, and the fluid velocity in the method of reg-
ularized Stokeslets [11] with its divergence. This study points to an increase of accuracy in the
electric field and divergence when an interpolant of stronger smoothness properties is used. Sim-
ulations of particle suspensions in viscous flows [31] demonstrate that numerical methods based
on divergence-free interpolation yield particle distributions that are more similar to the exact so-

3

lution, even while having higher error per particle. We provide further evidence of the correlation
of smoothness with accuracy by comparing results from MD simulations of liquid Argon where
the energy and forces are computed using the the three tricubic treecodes.

The paper is organized as follows. In Section 2, we review the general approach of tricubic
interpolation with global C1 continuity. We then develop two additional interpolation methods,
one with global C0 continuity and another which is discontinuous. In Section 3, we demonstrate
how an approximation for a particle-cluster interaction based on tricubic interpolation is obtained,
both for φ and its gradient. This forms the basis of our treecode algorithm. Section 4 presents the
treecode performance in terms of accuracy and CPU time for the Coulomb potential and its electric
field, the computation of the regularized Stokeslet velocity and divergence, and a comparison of
results from the molecular dynamics simulation of liquid Argon. Conclusions and future work
are discussed in Section 5.

2 Tricubic interpolation

Tricubic interpolation represents a function f (x,y,z) locally as a piecewise cubic polynomial of the
form

g(x,y,z)=
3

∑
i,j,k=0

aijkxiyjzk =αTµ, (2.1)

within a mesh element that is a unit cube 0≤ x,y,z≤ 1. Here, the unknown coefficients aijk are
ordered into a vector α by defining

α1+i+4j+16k = aijk, i, j,k=0,1,2,3, (2.2)

and the monomial basis of the tricubic is ordered into the vector µ through a similar definition

µ1+i+4j+16k = xiyjzk, i, j,k=0,1,2,3. (2.3)

Sixty-four linearly independent constraints are required to determine the 64 coefficients aijk. These
constraints are obtained by enforcing a subset of the eight equality conditions

∂γ+ν+ωg(x,y,z)
∂xγ∂yν∂zω

=
∂γ+ν+ω f (x,y,z)

∂xγ∂yν∂zω
, γ,ν,ω=0,1, (2.4)

at the vertices or inside the unit cube. We will group the eight conditions into the following four
sets

S0 : {g(x,y,z)= f (x,y,z)},

S1 :
{

∂g
∂x

=
∂ f
∂x

,
∂g
∂y

=
∂ f
∂y

,
∂g
∂z

=
∂ f
∂z

}
,

S2 :
{

∂2g
∂x∂y

=
∂2 f

∂x∂y
,

∂2g
∂x∂z

=
∂2 f

∂x∂z
,

∂2g
∂y∂z

=
∂2 f

∂y∂z

}
, (2.5)

S3 :
{

∂3g
∂x∂y∂z

=
∂3 f

∂x∂y∂z

}
.

Enforcing the 64 linearly independent constraints on the polynomial g and the function f leads to
a sparse linear system

Bα=b, (2.6)

4

where B is a 64×64 invertible matrix generated by applying the constraints to the polynomial and
b is obtained by applying the constraints to the function. The system can then be solved explicitly
as

α=B−1b (2.7)

to provide the coefficient vector α. The 64 constraints determine the global smoothness of the
tricubic interpolation. In the next three subsections, we present a global C1 continuous tricubic, a
global C0 continuous tricubic and finally a tricubic which lacks global continuity.

2.1 C1 continuous tricubic [23]

The C1 continuous tricubic was developed by Lekien and Marsden (LM) [23]. In their work, LM
proved that

• The set S0∪S1∪S2 enforced at the vertices of the cube is a necessary and sufficient condition
for C0 continuity.

• The set S0∪S1∪S2∪S3 enforced at the vertices of the cube is a necessary and sufficient con-
dition for C1 continuity.

Hence, the C1 continuous tricubic enforces the full set of eight equality constraints at the eight
corners P1,...,P8 of the unit cube, shown in Figure 1 (left). The function and its derivatives are
stacked into a vector b as follows,

bi =

f (Pi), 1≤ i≤8,

∂ f
∂x

(Pi−8), 9≤ i≤16,

∂ f
∂y

(Pi−16), 17≤ i≤24,

∂ f
∂z

(Pi−24), 25≤ i≤32,

∂2 f
∂x∂y

(Pi−32), 33≤ i≤40,

∂2 f
∂x∂z

(Pi−40), 41≤ i≤48,

∂2 f
∂y∂z

(Pi−48), 49≤ i≤56,

∂3 f
∂x∂y∂z

(Pi−56), 57≤ i≤64.

(2.8)

Evaluating the polynomial in (2.1) and its derivatives at the eight corners of the cube then leads
to a sparse linear system for the unknown coefficients which can be solved explicitly using equa-
tion (2.7).

The matrix B−1 is sparse and is computed exactly without numerical error [23]. It has exactly
1000 non-zero elements and a condition number κ2(B−1)=1.345×104. In the treecode algorithm,
only multiplication by the transpose of the inverse (B−1)T is needed [6], and as this matrix is
sparse, the multiplication can be done in-line.

LM also showed that the representation (2.1) has the minimum order necessary to maintain
global C1 continuity in the approximated function. Another advantage of the interpolant in the
form of (2.1) is that the derivatives of the interpolated function can be computed analytically,

5

Figure 1: Schematics of the unit cube for three tricubic interpolants. Left: The unit cube for the C1 continuous tricubic [23];

center: unit cube with one additional point at the center for C0 tricubic; right: unit cube with 8 additional points inside
for the globally discontinuous tricubic.

in contrast with three one-dimensional cubic interpolants, where the derivatives are not easily
accessible and finite differences or other methods are needed to recover the derivatives.

If analytical expressions for the derivatives of the function f are unavailable at the corners of
the cube for (2.8), various techniques such as finite differences can be used. On the other hand,
while analytical expressions of derivatives of many kernels can be found easily, for some fre-
quently used kernels, such as the regularized Stokeslets [11], the derivatives of higher order have
rather complicated expressions. This has necessitated the development of the discontinuous tricu-
bic we present later in Section 2.3, which requires only evaluations of the function and its first
derivatives.

2.2 C0 continuous tricubic

In order to generate a tricubic with global C0 continuity, we remove the S3 constraint from the
vertices. We consider the unit cube with an additional point P9 =(1/2,1/2,1/2) at the center of
the cube, see Figure 1(center). At the corners of the cube, we evaluate S0∪S1∪S2, while at the
center P9 we evaluate all S0∪S1∪S2∪S3. We stack these values into the right hand side of a linear
system of the form (2.6) as follows,

bi =

f (pi), 1≤ i≤9,

∂ f
∂x

(Pi−9), 10≤ i≤18,

∂ f
∂y

(Pi−18), 19≤ i≤27,

∂ f
∂z

(Pi−27), 28≤ i≤36,

∂2 f
∂x∂y

(Pi−36), 37≤ i≤45,

∂2 f
∂x∂z

(Pi−45), 46≤ i≤54,

∂2 f
∂y∂z

(Pi−54), 55≤ i≤63,

∂3 f
∂x∂y∂z

(P9), i=64.

(2.9)

6

The resulting 64×64 matrix is again sparse with 1602 non-zero integer elements and a condition
number κ2(B) = 2.11×105. The inverse of the matrix, B−1 is once again computed exactly, i.e.
without numerical error, and is available in a Github repository [7].

We note here that this method will not retain global C1 continuity in the approximated func-
tion. While the interpolated function is C∞ inside each element, the global C1 continuity is achieved
if and only if the function f and its three first derivatives are continuous on each of the six faces
of the cube [23]. As we are not enforcing continuity in the third derivative at the corners, we lose
the global C1 continuity but the interpolant is C0 continuous.

2.3 Discontinuous tricubic

Finally, we develop the discontinuous tricubic interpolant by evaluating S0∪S1 at the corners of
the cube as well as at the following additional 8 points within the unit cube:

P9=(1/4,1/4,1/4),
P10=(3/4,1/4,1/4),
P11=(1/4,3/4,1/4),
P12=(3/4,3/4,1/4),
P13=(1/4,1/4,3/4),
P14=(3/4,1/4,3/4),
P15=(1/4,3/4,3/4),
P16=(3/4,3/4,3/4).

These eight internal points are the corners of the smaller cube, as shown in Figure 1(right). The
choice of these points is motivated in part by the resulting linear system having an inverse matrix
with integer or fractional coefficients and thus being easily computed for practical use.

The resulting system (2.6) has the following right hand side:

bi =

f (Pi), 1≤ i≤16,

∂ f
∂x

(Pi−16), 17≤ i≤32,

∂ f
∂y

(Pi−32), 33≤ i≤48,

∂ f
∂z

(Pi−48), 49≤ i≤64.

(2.10)

The 64×64 system matrix B is again sparse with 2260 non-zero integer or fractional elements and
a condition number κ2(B) = 1.60×106. The matrix 27B−1, has integer elements only, and it is
provided online in a Github repository [7].

With this method, the approximated function will be discontinuous across the faces of the
cube. This is because continuity in the second derivative at the corners, as needed for C0 continuity
across the faces [23], is no longer enforced. At the same time, this reduces the need for higher order
derivatives of kernels that have rather complicated analytical expressions, such as the regularized
Stokeslets [11].

2.4 Rectangular parallelepiped meshes of arbitrary size

The representation in (2.1) can be modified for a rectangular parallelepiped mesh element of arbi-
trary size and location, with sides parallel to the x, y and z axis. The modification [6,23] consists of

7

mapping the mesh to a unit cube [0,1]3. The map shifts and scales each variable accordingly such
that

g(x,y,z)=
3

∑
i,j,k=0

aijk

(
x−x0

∆x

)i(y−y0

∆y

)j(z−z0

∆z

)k

, (2.11)

where ∆x,∆y,∆z are the lengths of the element in the three dimensions, and x0 =(x0,y0,z0) is the
lower left corner of the element. Evaluating the polynomial in (2.11) and the first derivatives at x0
for example, we get

g|x0 = a000,
∂g
∂x

∣∣∣
x0

=
a100

∆x
,

∂g
∂y

∣∣∣
x0

=
a010

∆y
,

∂g
∂z

∣∣∣
x0

=
a001

∆z
. (2.12)

Consequently, the evaluation of coefficients still follows (2.7) with the same B matrix, but the right
hand sides in (2.8), (2.9), and (2.10), are evaluated with the derivatives appropriately scaled, as

S∗1 :
{

∆x
∂ f
∂x

,∆y
∂ f
∂y

,∆z
∂ f
∂z

}
, (2.13)

S∗2 :
{

∆x∆y
∂2 f

∂x∂y
,∆x∆z

∂ f 2

∂x∂z
,∆y∆z

∂ f 2

∂y∂z

}
, S∗3 :

{
∆x∆y∆z

∂3 f
∂x∂y∂z

}
. (2.14)

2.5 A test of continuity in tricubic interpolants

We perform a simple numerical test of continuity of each interpolant across one of the faces of the
unit cube. We compute the potential due to an interaction between a single target particle and a
cluster C of source particles,

φ(xm,C)= ∑
yn∈C
K(xm,yn)fn, (2.15)

where
K(x,y)=

1
|x−y| (2.16)

is the Coulomb kernel. We assume a target particle xm =(2,2,2) and a cluster C of Nc =10 source
particles, where we compare the following two clusters: Cluster 1: y1 =(0.5,0.5,0), {y2,. . .yNc}∈
(0,1)3, and Cluster 2: Reflection of Cluster 1 through the z=0 plane. This choice tests the continuity
across the face of the cube in the z-plane. The weights of the source particles were chosen as f1=1
and fn =0 for n=2,...,Nc.

Continuity Cluster φ
∂φ

∂x
∂φ

∂y
∂φ

∂z
Exact 0.342997170285018 -0.060528912403238 -0.060528912403238 -0.080705216537651

C1 1 0.343088174174915 -0.060519566734223 -0.060622219592429 -0.080865234360966
2 0.343088174174914 -0.060519566734222 -0.060622219592428 -0.080865234360965

C0 1 0.343088174174915 -0.060519566734223 -0.060622219592429 -0.080011060027459
2 0.343088174174925 -0.060519566734250 -0.060622219592474 -0.081396487098385

Discont. 1 0.343141138245223 -0.060582125720232 -0.060779298363555 -0.079488441610077
2 0.343045183232005 -0.060510460381771 -0.060558868061402 -0.081155418436247

Table 1: A test of continuity across the face of the unit cube in the z-plane of three tricubic interpolants.

Table 1 shows the values of the potential and the three components of the electric field. Using
the C1-continuous tricubic, we obtain the same values, to within double-precision roundoff error,

8

in all four quantities for the two Clusters (rows 3-4, highlighted in blue). Using the C0-continuous
tricubic, we obtain the same values for the potential (rows 5-6, column 3, red) but different values
for the z-derivative (rows 5-6, last column, magenta). And finally, using the discontinuous tricubic,
we obtain different values for the two Clusters not only in the field but in the potential itself (rows
7-8, column 3, magenta).

3 The tricubic treecode

In our previous work [6], we developed a treecode algorithm based on the tricubic interpolant of
Lekien and Marsden [23]. The treecode based on the two new tricubic interpolations is similar.
For completeness, we summarize the algorithm here. First, all source particles are divided into a
hierarchy of clusters, and a target particle interacts with clusters of source particles, rather than
individual sources, as described below.

3.1 A particle-cluster interaction

Consider a target particle xm interacting with a source cluster C, as shown in Figure 2. The cluster
has a radius r, and the particle-cluster distance is R= |xm−yc|, where yc is the cluster center.

Figure 2: Particle-cluster interaction. The target particle is at position xm and the source particles are at positions yn in
cluster C. Cluster C has center yc and radius r. The particle-cluster distance is R= |xm−yc|.

The component of the sum (1.1) for this interaction is written as

φ(xm,C)= ∑
yn∈C
K(xm,yn) fn, (3.1)

where yn =(xn,yn,zn). If the particle and the cluster are far enough apart (that is
r
R
≤ θ [2], where

0≤ θ < 1), the sum in (3.1) is approximated in the following way. First, the cluster is shifted and
scaled to the unit cube [0,1]3,

x=
xn−xmin

∆x
, y=

yn−ymin

∆y
, z=

zn−zmin

∆z
, (3.2)

where ymin = (xmin,ymin,zmin) are the minimum x,y,z coordinates of the cluster C, and ∆y =
(∆x,∆y,∆z) is the size of the cluster box. The target point is shifted as well xm→xm−ymin. Then the
kernel functionK(xm,yn) is interpolated in the second (source) variable using the tricubic formula
(2.1),

φ(xm,C)= ∑
yn∈C
K(xm,yn) fn≈ ∑

yn∈C

3

∑
i,j,k=0

aijkxiyjzk fn. (3.3)

9

Since the tricubic coefficients aijk do not depend on the individual source particles in the cluster,
we switch the order of summation in (3.3), and use the definitions in equations (2.2) and (2.3), to
obtain the far-field approximation,

φ(xm,C) ≈
3

∑
i,j,k=0

aijk ∑
yn∈C

xiyjzk fn,

= αT
mµC, (3.4)

where
µC

1+i+4j+16k = ∑
yn∈C

µ1+i+4j+16k fn (3.5)

are the monomials of the cluster C. The significance of approximation (3.4) is first, the coefficients
αm depend only on the target particle xm and the cluster corners, and second, the cluster monomi-
als µC are independent of the target particle. We can achieve further time saving by using (2.7) to
rewrite (3.4) as

φ(xm,C)≈αT
mµC =(B−1bm)

TµC =bT
m(B−1)TµC =bT

mMC, (3.6)

where
MC =(B−1)TµC, (3.7)

are the modified monomials of the cluster C which are also independent of the target particle xm.
These modified monomials are therefore precomputed and stored for each cluster using (3.7), since
the 64×64 matrix (B−1)T is known explicitly. Furthermore, the matrix multiplication in (3.7) can
be done in-line since the matrix is sparse. These monomials MC can then be reused for different
targets. Equation (3.6) defines the far-field tricubic approximation for the potential at the target
position xm due to all the source particles yn in cluster C. In summary, the particle-cluster approx-
imation (3.6) is performed in two steps: first, the 64 elements of bm are computed using (2.8), (2.9),
or (2.10), scaling the derivatives as in (2.13)-(2.14), and second, the dot product of bm and MC

is computed in (3.6). As described in [6], the cost of evaluating the particle-cluster interaction
using (3.6) for N targets is estimated as O(N logN), consistent with other treecodes.

3.2 Computing derivatives of φ (3.1)

One of the advantages of the far-field approximation (3.6) that uses the tricubic interpolant is that
the derivatives of φ can be easily computed analytically rather than numerically. We summarize
the computation from [6].

The electric field at target position xm due to the source cluster C is given by

Em =−∇xm φ(xm,C)=∇yn φ(xm,C), (3.8)

since the kernel K is a function of |x−y|. From the tricubic approximation of the potential given
in (3.6), the field is approximated as

Em ≈ bT
m∇yn MC

= bT
m

MC,i

MC,j

MC,k

, (3.9)

10

since bm is independent of yn. We compute the derivatives of the modified monomials as

MC,i :=
∂MC

∂xn
=(B−1)T ∂

∂xn

(
µC
)
=(B−1)TµC,i, (3.10)

MC,j :=
∂MC

∂yn
=(B−1)TµC,j, (3.11)

MC,k :=
∂MC

∂zn
=(B−1)TµC,k. (3.12)

The derivatives of µC are computed element-wise as

µC,i :=
∂

∂xn

(
µC

1+i+4j+16k

)
=

i
∆x

µC
1+(i−1)+4j+16k, (3.13)

µC,j :=
∂

∂yn

(
µC

1+i+4j+16k

)
=

j
∆y

µC
1+i+4(j−1)+16k, (3.14)

µC,k :=
∂

∂zn

(
µC

1+i+4j+16k

)
=

k
∆z

µC
1+i+4j+16(k−1). (3.15)

The monomials MC,i, MC,j and MC,k are precomputed for each cluster in the same routine that
precomputes MC and reused for different targets.

3.3 The particle-cluster algorithm

We now give an overview of the treecode algorithm that uses the far-field approximation (3.6) for
φ and (3.9) for the derivatives of φ. The pseudocode is given in Algorithm 1, and it is similar to
other treecodes [4, 30]. First, the target particle coordinates {xm}, the source particle coordinates
{yn} and weights { fn} (weights are either one or three-dimensional) are provided as input. Then,
the source particles are divided recursively into clusters to generate a tree structure as follows.
The root cluster is taken as the smallest rectangular box that encloses all particles. The root is
bisected in each coordinate direction to create 8 child clusters. The process is repeated for each
child cluster, recursively until a cluster has fewer than N0 particles, where N0 is a user-specified
leaf-size parameter. For each cluster, the modified monomials MC,MC,i,MC,j,MC,k are computed
using equations (3.7), (3.10), (3.11), and (3.12). This concludes the precomputation needed at the
start of the algorithm. The algorithm then loops through the target particles. For each target
particle, the treecode algorithm cycles through the clusters in the tree recursively. The particle
and the cluster are considered well-separated when the maximum acceptance criterion (MAC) is
satisfied,

r
R
≤ θ, (3.16)

where r is the cluster radius, R is the particle-cluster distance, and θ is a user-specified parameter.
In this case, the particle-cluster interaction is computed using the far-field approximations (3.6), (3.9),
where bm is evaluated using (2.8), (2.9), or (2.10), and the modified monomials MC,MC,i,MC,j,MC,k

are simply looked up from the precomputation. If the MAC is not satisfied, the children of the
cluster are checked, and if the cluster is a leaf (no children), then the particle-cluster interaction is
computed directly using (3.1).

11

Algorithm 1 tricubic treecode
1: input: target particle coordinates xm,m=1,.. .,M
2: input: source particle coordinates and weights yn, fn,n=1,.. .,N
3: input: MAC parameter θ, maximum leaf size N0
4: output: potential φm, electric field Em, m=1,.. .,M
5: program main
6: build tree of source particle clusters
7: for each cluster, precompute and store MC,MC,i,MC,j,MC,k using (3.7), (3.10), (3.11),

and (3.12)
8: for m=1,.. .,M, compute potential(xm, root), end for
9: end program

10: subroutine compute potential(x, C)
11: if MAC (3.16) is satisfied
12: compute bm using (2.8), (2.9), or (2.10)
13: compute particle-cluster interaction by approximations (3.6) and (3.9)
14: else
15: if C is a leaf, compute particle-cluster interaction by direct sum (3.1)
16: else
17: for each child C′ of C, compute potential(x, C′), end for
18: end subroutine

4 Numerical results

4.1 Implementation details

The algorithms are written in double precision C++ using the Clang compiler frontend with the
-O2 optimization. The source code is available online in a Github repository [7, 8]. The tests
presented here were performed on a Dell PowerEdge R940xa Linux box with 2.1GHz Intel Xeon
Gold processors.

4.2 Coulomb kernel

In this section, we compare the accuracy of the three treecodes in approximating the Coulomb
potential and electric field for systems of size N ∈{104, 8×104, 64×104} where the particles are
randomly distributed in a cube of dimension [−5,5]×[−5,5]×[0,10] and the weights fn∈ (−1,1).
The maximum number of particles in a leaf of the tree is set to N0=1000 and the MAC parameter
θ=0.3 :0.1 :0.8.

We approximate the potential φ in (1.1) and the electric field ∇φ using equations (3.6) for
the potential and (3.9) for the electric field. We compute the relative error, in `2-norm, in the
approximation of the potential, Error(φ), given by

Error(φ)=
(N

∑
m=1

∣∣∣φd(xm)−φt(xm)
∣∣∣2/ N

∑
m=1

∣∣∣φd(xm)
∣∣∣2)1/2

, (4.1)

as well as in the approximation of the electric field, Error(∇φ), defined as

Error(∇φ)=
(N

∑
m=1

∣∣∣∇φd(xm)−∇φt(xm)
∣∣∣2/ N

∑
m=1

∣∣∣∇φd(xm)
∣∣∣2)1/2

, (4.2)

12

where φd,∇φd are the exact potential and electric field computed by direct summation while φt

and ∇φt are the corresponding treecode approximations.
Figure 3 provides a graphical comparison of the accuracy of the three methods. The top row

(a-c) is a plot of the relative error in potential, Error(φ), versus the MAC parameter θ. The middle
row (e-f) is a plot of the relative error in the electric field, Error(∇φ) against θ. The bottom row
(g-h) is a plot of Error(∇φ) versus Error(φ). There are two plots for the discontinuous tricubic
treecode: One plot labeled DiscontinuousA for which the treecode used analytical derivatives to
compute the components of b in equation (2.10) and the other labeled DiscontinuousFD where
the treecode used a centered difference to approximate b.

All three methods interpolate the potential at the vertices of the mesh, but the C0 continuous
method has one additional interpolation point in the center of the mesh and the discontinuous
method has eight additional interpolation points inside the mesh. As such, the polynomial for the
discontinuous method will provide the best match for the potential inside the mesh, followed by
the C0 continuous method and then the C1 continuous method. The top row of Figure 3 provides
support for this conclusion. For all system sizes, the discontinuous method is the most accurate
in computing the potential followed by the C0 continuous method and then the C1 continuous
method.

The middle and bottom row of Figure 3 show the effect of the varying smoothness of the
methods. We see in the middle row that even though the C1 continuous method was the least
accurate in approximating the potential, this is not the case in approximating the electric field.
In Figure 3(d) and Figure 3(e), the C1 continuous method is the most accurate in approximating
the electric field. In Figure 3(f), the three methods have similar accuracy. The regularity of the
electric field is one less than that of the potential, as such for the same accuracy in the potential,
the higher smoothness of the C1 continuous method yields a better approximation than the other
two methods. The bottom row of Figure 3 provides more evidence of the effect of smoothness
on the accuracy of the electric field. The plots show that for a fixed accuracy in the potential, the
C1 continuous method has the best accuracy in the electric field, followed by the C0 continuous
method and finally the discontinuous method.

Figure 4 shows plots of the CPU time against θ for the Coulomb kernel. All three treecodes
with analytical derivatives are similar in terms of efficiency. From the slopes of the curves, we
see that the CPU time scales ∼ θ−2.53. Even with the higher computational cost from smaller
MAC parameters, the treecode still provides some efficiency over direct sum. The discontinuous
treecode that uses finite difference derivatives is slower than the version that employs analytical
derivatives, although both versions have similar accuracy. We will see in the next section, that the
difference in efficiency narrows for the more complicated regularized Stokeslet. The more complex
regularized Stokeslet kernel is a better use case than the relatively simple Coulomb kernel for the
version of the discontinuous method that uses finite difference.

Figure 5 shows plots of the CPU time for the analytical treecodes and the direct sum against
N. The figure shows the O(N logN) scaling of the three treecodes and the O(N2) scaling of direct
sum. The discontinuous treecode uses analytical derivatives in this case.

4.3 Regularized Stokeslet kernel

Here, we examine the effect of smoothness on the accuracy of the treecodes for the more com-
plicated regularized Stokeslet kernel. The method of regularized Stokeslets (MRS) [11] is a La-
grangian method for computing Stokes flow where the point forces are given by a cutoff function.
The method has been used extensively in modeling various biological phenomena. The velocity u

13

0.4 0.6 0.8
10

-6

10
-5

10
-4

0.4 0.6 0.8

10
-4

10
-3

10
-2

0.4 0.6 0.8
10

-5

10
-4

10
-3

10
-2

0.4 0.6 0.8

10
-7

10
-6

10
-5

10
-4

0.4 0.6 0.8

10
-6

10
-5

10
-4

0.4 0.6 0.8

10
-5

10
-4

10
-3

10
-6

10
-5

10
-4

10
-7

10
-6

10
-5

10
-4

10
-4

10
-3

10
-2

10
-6

10
-5

10
-4

10
-5

10
-4

10
-3

10
-2

10
-5

10
-4

10
-3

Figure 3: Accuracy in θ of the tricubic treecodes for the Coulomb kernel. N is the number of particles, θ is the MAC
parameter.

at a point x is given by

u(x)=
N

∑
n=1

(fnH1(rn)+[fn ·(x−yn)](x−yn)H2(rn)), (4.3)

where forces {fn}, n=1: N, are located at positions {yn}, and rn= |x−yn|. The radial functions H1
and H2 are defined by

H1(r)=
2ε2+r2

8π(r2+ε2)3/2 , H2(r)=
1

8π(r2+ε2)3/2 , (4.4)

where ε > 0 is the regularization parameter. In this work, ε = 0.02. One notable feature of the
MRS is that it is analytically divergence-free, i.e., ∇·u= 0 for any ε 6= 0, and we are interested in
exploring treecode algorithms that preserve this feature to a larger degree.

The complexity of the MRS kernels makes them good candidates for treecodes where only
kernel evaluations are needed, such as the kernel-independent treecode (KITC), but we know of
only three recent works where fast summation methods were used to evaluate these kernels. Two
recent applications [22], [26] used either the original kernel-independent fast multipole method
(KIFMM) [32] or a later version in which the equivalent densities are defined on coronas (or vol-
umetric shells) around each cluster [33]. The regularized Stokeslets were also evaluated in the
kernel-independent treecode based on barycentric Lagrange interpolation [30]. Simulations of
particle suspensions in viscous flows [31] demonstrate that numerical methods based on divergence-
free interpolation yield particle distributions that are more similar to the exact solution, even while
having higher error per particle. Our aim here is to demonstrate the effect of smoothness on the
performance of the tricubic treecode not only in evaluating the velocity (4.3), but also in preserving

14

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
10

-1

10
0

10
1

10
2

10
3

10
4

Figure 4: CPU time vs θ for the three tricubic treecode methods for the Coulomb kernel.

the divergence-free property of the MRS. In Appendix A, we derive the particle-cluster approxi-
mations for the velocity and the divergence similar to the approximations for scalar kernels given
in equations (3.6) and (3.9). We also provide formulas for analytical derivatives of the MRS kernel.

We define the velocity error as

Error(u)=
(N

∑
m=1
|ud(xm)−ut(xm)|2

/ N

∑
m=1
|ud(xm)|2

)1/2
, (4.5)

where ud is the exact velocity computed by direct summation, ut is the treecode approximation,
and |u| is the Euclidean norm. The error in divergence is defined as

Error(∇·u)= 1
N

N

∑
m=1
|(∇·u)t(xm)|, (4.6)

where (∇·u)t is the treecode approximation of divergence and |·| is the absolute value.
The systems and test parameters used for the regularized Stokeslet are similar to those used

for the Coulomb kernel in Section 4.2. The only difference is that the weights for the MRS kernels
fn =(fn,1, fn,2, fn,3) are vectors with fn,s∈ (−1,1), for s=1,2,3.

Figure 6 shows the accuracy of the three treecodes for N = 10K,80K,640K particles. The top
row (a-c) is a plot of the error in the approximation of the velocity, Error(u), against the MAC
parameter θ. Similar to the Coulomb kernel, we see that the discontinuous treecode, with more
interpolation points inside the mesh, produces the best accuracy since the velocity does not in-
volve any derivatives of the kernel. The C1 continuous treecode is the least accurate of the three
since it has the fewest interpolation points. The middle row (d-f) plots the error in the divergence
of the velocity, Error(∇·u) versus θ and the last row (g-i) plots Error(∇·u) against Error(u). The
parameter Error(∇·u) is a measure of how well a method preserves the divergence-free property

15

10
4

10
5

10
6

N

10
0

10
1

10
2

10
3

10
4

c
p
u
 t
im

e
 (

s
)

Figure 5: CPU vs N for the tricubic treecodes and direct sum. N is the number of particles, θ is the MAC parameter and
the kernel is the Coulomb kernel.

of the MRS kernel. We see in the middle plots that because the divergence requires derivatives of
the kernel, the C1 continuous treecode is the method that best preserves the divergence-free prop-
erty for a fixed error in the velcotiy. The last row shows a clear separation of the three methods
due to the differences in global smoothness. We see that for a fixed accuracy level in the velocity,
a higher degree of smoothness leads to better preservation of the divergence-free property. This is
similar to what we observed for the electric field for the Coulomb kernel in Section 4.2.

Figure 7 shows the performance of the treecodes in time for varying MAC parameter θ com-
pared to direct sum. All three methods have identical computational performance for the analyt-
ical versions. We see that for the MRS kernel, the finite difference version of the discontinuous
method is closer in computational time to the analytical version compared to the difference ob-
served for the Coulomb kernel. The CPU time scales ∼ θ−2.3 which is similar to the θ−2.5 scaling
observed for the Coulomb potential. This suggests that the dependence of the CPU time on θ is
largely independent of the kernel.

4.4 Molecular dynamics simulation

The results for the Coulomb and MRS kernels presented in the previous two sections were for a
standalone computation. In this section we look at the effect of smoothness on dynamical proper-
ties of a liquid Argon system. The system is evolved in time as a canonical ensemble via molecular
dynamics (MD) simulation on the Lennard-Jones potential energy surface

ψ(r)=4ε

[(σ

r

)12
−
(σ

r

)6
]

, (4.7)

where ε= 0.9661 kJ/mol and σ= 3.405Å. The system contained 100 Argon atoms in a cubic box
of length 17.4Å with periodic boundary conditions and was equilibrated at 85oK using an Evan

16

0.4 0.6 0.8

10
-4

10
-2

0.4 0.6 0.8

10
-4

10
-3

10
-2

0.4 0.6 0.8
10

-4

10
-2

0.4 0.6 0.8

10
-4

10
-2

0.4 0.6 0.8
10

-4

10
-3

10
-2

0.4 0.6 0.8

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-4

10
-2

10
-4

10
-3

10
-2

10
-4

10
-3

10
-2

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

Figure 6: Accuracy in θ of the tricubic treecodes for the MRS kernel. N is the number of particles, θ is the MAC parameter.

thermostat [35]. The simulations were performed with the MD simulation package DL POLY
Classic [35]. We incorporated all three tricubic treecodes into DL POLY Classic as options for
computing the energy of the system and the forces on the atoms. In all the tests, the same initial
configuration of the system was equilibrated over 5000 MD steps, then we took statistics over a
further 20000 steps.

We studied the effect of smoothness of each method on the system’s total energy fluctuation
in time, its velocity-velocity auto-correlation function [34] and its temperature fluctuations over
time. We performed simulations for three different timesteps, ∆t=1fs, ∆t=5fs and ∆t=10fs each
with two different treecode MAC parameters θ=0.5 and θ=0.7 for a total of six MD simulations.
The maximum number of particles in a leaf was set to N0 =4 for each of the treecodes. The MAC
parameter controls the proportion of the treecode computations done with direct summation ver-
sus tricubic approximation. We chose relatively large MAC parameters of θ = 0.5 and θ = 0.7 to
ensure the computations included a high proportion of tricubic approximations in order to be able
to clearly observe the effects of smoothness. We also chose large timesteps to put the system in a
regime of high energy and temperature fluctuations.

Figure 8 is a plot of the energy over the 20000 additional MD steps after equilibration. The
energy does not depend on directly on derivatives of the kernel, as such we expect the discontinu-
ous method, with the sixteen interpolation points, to be the most accurate and as a result have the
least fluctuations in energy over time. The left column of Figure 8, panels (a), (c), (e), is a regime
of relatively higher accuracy for the treecodes with θ=0.5, thus all three methods have similar en-
ergy fluctuations. The right-column, panels (b), (d), (f), with θ=0.7 is a less accurate regime. The
treecode has a higher proportion of tricubic approximations in this regime compared to θ=0.5. As

17

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
10

-1

10
0

10
1

10
2

10
3

10
4

c
p
u
 t
im

e
(s

)

Figure 7: CPU time vs θ for the three tricubic treecode methods for the MRS kernel.

such the discontinuous and C0 methods, with more evaluation points, are more accurate than the
C1 method. We see that the C1 continuous tricubic has the most fluctuations and the fluctuations
increase as ∆t increases. On the other hand, the energy for the C0 and discontinuous methods
exhibit relatively little fluctuations compared to the C1 method, even with increasing ∆t.

The velocity-velocity autocorrelation function CVV(t) is a function of the velocities of the
atoms. The velocities are computed from an integration of the forces, −∇ψ(r), hence CVV(t)
depends on the derivatives of the Lennard-Jones kernel. Figure 9 is a plot of CVV(t) in time gener-
ated from simulations using the three treecode methods and direct sum with ∆t=1fs and θ=0.5
for the treecodes. The plots for the other five combinations of the timesteps and MAC parameter
are similar.

Figure 10 compares the errors in the velocity-velocity autocorrelation function for the treecode
methods. The error is computed by subtracting CVV(t) for the treecodes from that for direct sum.
The plots show a clear dependence of CVV(t) on the smoothness of a treecode. The C1 treecode
shows the least deviation from direct sum, followed by the C0 treecode and finally the discontin-
uous treecode. The middle row provides a very clear depiction of this trend.

Figure 11 is a plot of the fluctuations in instantaneous temperature over time for all six regimes.
Given that atom i has velocity vi, the instantaneous temperature is obtained as

T(t)=

N

∑
i=1

miv2
i (t)

κB(3N−3)
, (4.8)

where mi and vi are the mass and velocity respectively of particle i, vi= |vi| and κB is Boltzmann’s
constant. Clearly T(t) depends on the velocity and thus on derivatives of the kernel. The fluctu-
ations are computed as |85oK−T(t)|. For the regimes with ∆= 1fs , panels (a) and (b), all three

18

0 0.5 1 1.5 2

10
4

-420

-400

-380

-360
 = 0.5, t = 1fs

0 0.5 1 1.5 2

10
4

-450

-400

-350

-300
 = 0.7, t = 1fs

0 0.5 1 1.5 2

10
4

-400

-350

 = 0.5, t = 5fs

0 0.5 1 1.5 2

10
4

-400

-350

-300

 = 0.7, t = 5fs

0 0.5 1 1.5 2

10
4

-400

-350

 = 0.5, t = 10fs

0 0.5 1 1.5 2

10
4

-400

-350

-300
 = 0.7, t = 10fs

Figure 8: Fluctuations in energy for MAC parameters θ∈{0.5,0.7} and time steps ∆t∈{1fs, 5fs, 10fs}

methods have similar small temperature fluctuations. Panels (c)-(f) show that as the timestep
increases, the discontinuous method produces the highest temperature fluctuations as expected.
The magnitude of the fluctuations in the discontinuous method increase by 3 orders of magnitude
with an order of magnitude increase in the timestep ∆t.

For a system with N atoms, the treecode is an O(N logN) method and the typical radial cutoff
approach for the Lennard-Jones potential is O(N). Our choice of a Lennard-Jones liquid for the
MD simulations was motivated by the need for a simple system to allow the effects of smooth-
ness to be clearly observed. The tricubic treecode is most efficient in simulations with slowly
decaying potentials. For example, it can be deployed to speed up computations of the Coulomb
potential for electrostatic interactions in free-space or periodic boundary conditions [5] or the real
space Ewald sum in periodic boundary conditions [9]. In MD simulations, typically the he short-
range Lennard-Jones and long-range electrostatic interactions are computed separated. With the
treecode, both computations can be combined in one routine for efficiency.

19

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.2

0

0.2

0.4

0.6

0.8

1
 = 0.5, t = 1fs

Figure 9: A sample velocity-velocity autocorrelation function CVV(t). Time step ∆t=1 fs and θ=0.5.

0 0.05 0.1 0.15 0.2

-0.04

-0.02

0

 = 0.5, t = 1fs

0 0.05 0.1 0.15 0.2

-0.04

-0.02

0

 = 0.7, t = 1fs

0 0.05 0.1 0.15 0.2

-0.04

-0.02

0

 = 0.5, t = 5fs

0 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0

 = 0.7, t = 5fs

0 0.05 0.1 0.15 0.2

-0.04

-0.02

0

 = 0.5, t = 10fs

0 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0

 = 0.7, t = 10fs

Figure 10: Errors in velocity-velocity autocorrelation function CVV(t) for MAC parameters θ ∈ {0.5,0.7} and time steps
∆t∈{1fs, 5fs, 10fs}.

20

0 0.5 1 1.5 2

10
4

0.5

1

1.5

2
10

-3 = 0.5, t = 1fs

0 0.5 1 1.5 2

10
4

0

1

2

3
10

-3 = 0.7, t = 1fs

0 0.5 1 1.5 2

10
4

0

0.2

0.4

 = 0.5, t = 5fs

0 0.5 1 1.5 2

10
4

0

0.1

0.2
 = 0.7, t = 5fs

0 0.5 1 1.5 2

10
4

0

0.5

1
 = 0.5, t = 10fs

0 0.5 1 1.5 2

10
4

0

0.5

1
 = 0.7, t = 10fs

Figure 11: Fluctuations in temperature for MAC parameters θ∈{0.5,0.7} and time steps ∆t∈{1fs, 5fs, 10fs}.

21

5 Conclusions

This paper presented a comparative study of treecodes based on three tricubic interpolants of
different smoothness: C1-continuous, C0-continuous, and discontinuous across the faces of tree
cluster boxes. The comparisons presented in this paper indicate that when using polynomial ap-
proximation in a tree-based method, the global smoothness properties of the approximations may
have an effect on the overall accuracy of the algorithm, especially when evaluating the derivatives
of the N-sum. We have studied the Coulomb potential and its electric field, the velocity due to reg-
ularized Stokeslets and its divergence, and performed a simple molecular dynamics simulation of
liquid Ar. Our results point to a slight increase in accuracy in the derivatives (electric field, diver-
gence) relative to the accuracy in the quantity itself (potential, fluid velocity) when an interpolant
of stronger smoothness is used. This suggests that the effects of C1 continuity in the interpolated
kernel may be advantageous in simulations where preserving the accuracy of the derivative quan-
tities in relation to the accuracy of the function is also sought, such as force and virial values in
MD simulations and preserving the zero divergence in fluid dynamics. In computations where the
derivatives quantities are not required, our results indicate that the discontinuous method, which
has the most evaluation points of the three methods presented, provides the highest accuracy of
the three methods.

Because the polynomial order of the tricubic treecodes is fixed at three, a small MAC parameter
is usually required to achieve high accuracy for simulations with fixed particle density at more
computational cost. Another way to achieve higher accuracy is by using higher order interpolants.
The tricubic interpolation can only guarantee C1 continuity. In future work, we hope to improve
on this work by using a higher order interpolating polynomial, such as a triquintic, to achieve
higher accuracy and smoothness in the overall algorithm.

Acknowledgments

The work of HAB was partially supported by the National Science Foundation grant CHE-2016048
and start-up funds from San Francisco State University. The work of ST was partially supported
by the National Science Foundation grant DMS-2012371. Partial support is also acknowledged
from the Visiting Faculty Program of the U.S. Department of Energy, Office of Science, Office
of Workforce Development for Teachers and Scientists (WDTS). We used computing resources
provided by San Francisco State University as well as resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory (LBNL), operated under Contract No. DE-
AC02-05CH11231.

A Derivations for regularized Stokeslet kernel

A.1 Particle-cluster approximation

Let xm be a target point and {yn} a set of source points in a cluster C. The cluster is shifted and
scaled as in equation (3.2) and the target undergoes the same shift as explained in Section 3.1. The

22

velocity u at the target point xm due to the source points {yn} in a cluster C is given by

u(xm) = ∑
yn∈C

(fnH1(rn)+[fn ·(xm−yn)](xm−yn)H2(rn)),

= ∑
yj∈C

H2(rn)

g(rn)+x2
n xnyn xnzn

xnyn g(rn)+y2
n ynzn

xnzn ynzn g(rn)+z2
n

 fn,1
fn,2
fn,3

, (A.1)

where H2(r) is as defined in equation (4.4),

g(r)=2ε2+r2, (A.2)

fn =(fn,1, fn,2, fn,3), xm−yn =(xn,yn,zn), rn = |xm−yn|.
We can rewrite equation (A.1) as

u(xm)= ∑
yn∈C

K1(xm,yn)
K2(xm,yn)
K3(xm,yn)

 fn,1+

K2(xm,yn)
K4(xm,yn)
K5(xm,yn)

 fn,2+

K3(xm,yn)
K5(xm,yn)
K6(xm,yn)

 fn,3

, (A.3)

where the kernelsK1(xm,yn)=H2(rn)[g(rn)+x2
n],K2(xm,yn)=H2(rn)xnyn,K3(xm,yn)=H2(rn)xnzn,

K4(xm,yn)=H2(rn)[g(rn)+y2
n], K5(xm,yn)=H2(rn)ynzn andK6(xm,yn)=H2(rn)[g(rn)+z2

n]. By fol-
lowing a similar procedure to that shown in Section 3.1, we find a particle-cluster approximation
for each of the sums above as

∑
yn∈C
K`(xm,yn) fn,s≈bT

` MC
s , (A.4)

where ` ∈ {1,2,3,4,5,6} and s = 1,2,3. The modified monomials MC
s depend only on the cluster

while the vectors b` depend on the kernel, thus

u(xm)≈

bT

1

bT
2

bT
3

MC
1 +

bT

2

bT
4

bT
5

MC
2 +

bT

3

bT
5

bT
6

MC
3 . (A.5)

Using equations (3.10), (3.11), (3.12), the divergence is then computed as

∇·u(xm) ≈
(

bT
1 +bT

2 +bT
3

)
∇·MC

1 +
(

bT
2 +bT

4 +bT
5

)
∇·MC

1 +
(

bT
3 +bT

5 +bT
6

)
∇·MC

1 ,

= bT
123

(
MC,i

1 +MC,j
1 +MC,k

1

)
+bT

245

(
MC,i

2 +MC,j
2 +MC,k

2

)
+bT

356

(
MC,i

3 +MC,j
3 +MC,k

3

)
,

= bT
123MC,ijk

1 +bT
245MC,ijk

2 +b356MC,ijk
3 , (A.6)

where bT
ijk =bT

i +bT
j +bT

k and MC,ijk
s =MC,i

s +MC,j
s +MC,k

s .

A.2 Analytical derivatives of the regularized Stokeslet kernel

Analytical computation of the vectors b` in equation (A.4) requires enforcing a subset of the equal-
ity constraints S1, S2 or S3. Here we derive formulas for the constraints applied to the MRS kernel
at the interpolation points.

23

We start by defining the symmetric matrix S=(x−yn)(x−yn). Then the formula for the velocity
at a point x provided in equation (4.3) can be rewritten as

u(x)=
N

∑
n=1
K(rn)fn, (A.7)

where K(rn)=Ψ(rn)H2(rn), Ψ(rn)=g(rn)I+S and I is the 3×3 identity matrix. Let xm be a target
point and yc one of the interpolation points on or inside the cluster. Let xm−yc = 〈x,y,z〉 and
r= |xm−yc|, then

S=(xm−yc)(xm−yc)=

x2 xy xz
xy y2 yz
xz yz z2

. (A.8)

The kernel K and its derivatives provide the components of b`.

A.2.1 First partial derivatives

∂K
∂xc

=
∂

∂xc
Ψ(r)H2(r)=

∂Ψ
∂xc

H2(r)+Ψ
∂H2

∂xc
. (A.9)

We find
∂H2

∂xc
=q(r)H2(r)x, (A.10)

with
q(r)=

3
r2+ε2 , (A.11)

and
∂Ψ
∂xc

=
∂

∂xc
(g(r)I+S)= ∂g

∂xc
I+

∂S
∂xc

, (A.12)

with
∂g
∂x

=−2x, (A.13)

and

∂S
∂x

=−

2x y z
y 0 0
z 0 0

=Sx. (A.14)

Then,

∂Ψ
∂xc

=−2xI−Sx =−

4x y z
y 2x 0
z 0 2x

=Tx, (A.15)

and thus,
∂K
∂xc

=(Tx+xq(r)Ψ(r))H2(r). (A.16)

Similarly,
∂K
∂yc

=
(
Ty+yq(r)Ψ(r)

)
H2(r), (A.17)

and
∂K
∂zc

=(Tz+zq(r)Ψ(r))H2(r), (A.18)

with

Ty =−

2y x 0
x 4y z
0 z 2y

, and Tz =−

2z 0 x
0 2z y
x y 4z

. (A.19)

24

A.2.2 Second partial derivatives

∂2K
∂xc∂yc

=H2(r)
∂

∂xc

(
Ty+yq(r)Ψ(r)

)
+
(
Ty+yq(r)Ψ(r)

) ∂

∂xc
H2(r), (A.20)

and
∂

∂xc

(
Ty+yq(r)Ψ(r)

)
=

∂

∂xc
Ty+y

(
q(r)

∂Ψ
∂xc

+Ψ(r)
∂q
∂xc

)
. (A.21)

Since
∂q
∂xc

=
2
3

x [q(r)]2 , (A.22)

and

∂

∂xc
Ty =

0 1 0
1 0 0
0 0 0

=Pxy, (A.23)

we find
∂2K

∂xc∂yc
=

{
Pxy+

(
xTy+yTx+

5
3

xyq(r)Ψ(r)
)

q(r)
}

H2(r). (A.24)

Similarly,
∂2K

∂xc∂zc
=

{
Pxz+

(
xTz+zTx+

5
3

xzq(r)Ψ(r)
)

q(r)
}

H2(r), (A.25)

and
∂2K

∂yc∂zc
=

{
Pyz+

(
yTz+zTy+

5
3

yzq(r)Ψ(r)
)

q(r)
}

H2(r), (A.26)

with

Pxz =

0 0 1
0 0 0
1 0 0

, and Pyz =

0 0 0
0 0 1
0 1 0

. (A.27)

A.2.3 Third partial derivative

Let G=Pyz+

(
yTz+zTy+

5
3

yzq(r)Ψ(r)
)

q(r)=Pyz+Jyzq(r), then

∂3K
∂xc∂yc∂zc

=H2(r)
∂

∂xc
G+G ∂

∂xc
H2(r). (A.28)

Consequently,
∂

∂xc
G=

∂Pyz

∂xc
+q(r)

∂

∂xc
Jyz+Jyz

∂q
∂xc

, (A.29)

with

∂Pyz

∂xc
=

0 0 0
0 0 0
0 0 0

, (A.30)

and
∂

∂xc
Jyz =y

∂Tz

∂xc
+z

∂Ty

∂xc
+

5
3

yz
(

q(r)
∂Ψ
∂xc

+Ψ(r)
∂q
∂xc

)
. (A.31)

25

Since
∂Ty

∂xc
=Pxy and

∂Tz

∂xc
=Pxz, we find

∂3K
∂xc∂yc∂zc

=

{
xPyz+yPxz+zPxy+

5
3

q(r)
(

yzTx+xzTy+xyTz+
7
3

xyzq(r)Ψ(r)
)}

q(r)H2(r).

(A.32)

References

[1] L. AF KLINTEBERG, D. S. SHAMSHIRGAR AND A.-K. TORNBERG, Fast Ewald summation for free-space
Stokes potentials, Res. Math. Sci., 4 (2017), Article 1.

[2] J. E. BARNES AND P. HUT, A hierarchical O(N logN) force-calculation algorithm, Nature, 324 (1986),
pp. 446–449.

[3] H. A. BOATENG AND I. T. TODOROV, Arbitrary order permanent Cartesian multipolar electrostatic interac-
tions, J. Chem. Phys., 142, 034117 (2015), pp. 1–13.

[4] H. A. BOATENG, Mesh-free hierarchical clustering methods for fast evaluation of electrostatic interactions of
point multipoles, J. Chem. Phys., 147, 164104 (2017), pp. 1–16.

[5] H. A. BOATENG, Periodic Coulomb Tree Method: An Alternative to Parallel Particle Mesh Ewald, J. Chem.
Theory Comput., 16, 1 (2020), pp. 7–17.

[6] H. A. BOATENG AND S. TLUPOVA, A treecode algorithm based on tricubic interpolation, (2022), submitted.
[7] H. BOATENG AND S. TLUPOVA, Comparison of tricubic treecodes for the Coulomb kernel,

https://github.com/haboateng/comparison-of-tricubic-treecodes-Coulomb-kernel, Last assessed:
08-10-2022

[8] H. BOATENG AND S. TLUPOVA, Comparison of tricubic treecodes for the regularized Stokeslet
kernel, https://github.com/haboateng/comparison-of-tricubic-treecodes-regularized-stokeslet-kernel,
Last assessed: 08-10-2022

[9] U. ESSMANN, L. PERERA, M. L. BERKOWITZ, T. DARDEN, H. LEE AND L. G. PEDERSEN, A smooth
particle mesh Ewald method, J. Chem. Phys., 103, 19 (1995), pp. 8577–8593.

[10] H. CHENG, L. GREENGARD AND V. ROKHLIN, A fast adaptive multipole algorithm in three dimensions, J.
Comput. Phys., 155 (1999), pp. 468–498.

[11] R. CORTEZ, L. FAUCI AND A. MEDOVIKOV, The method of regularized Stokeslets in three dimensions:
Analysis, validation, and application to helical swimming, Phys. Fluids, 17 (2005), Article 031504.

[12] C. I. DRAGHICESCU AND M. DRAGHICESCU, A fast algorithm for vortex blob interactions, J. Comput.
Phys., 116 (1995), pp. 69–78.

[13] Z.-H. DUAN AND R. KRASNY, An adaptive treecode for computing nonbonded potential energy in classical
molecular systems, J. Comput. Chem., 22 (2001), pp. 184–195.

[14] U. ESSMANN, L. PERERA, M. BERKOWITZ, T. DARDEN, H. LEE AND L. PEDERSEN, A smooth particle
mesh Ewald method, J. Chem. Phys., 103 (1995), pp. 8577–8593.

[15] W. FONG AND E. DARVE, The black-box fast multipole method, J. Comput. Phys., 228 (2009), pp. 8712–
8725.

[16] L. F. GREENGARD AND J. HUANG, A new version of the Fast Multipole Method for screened Coulomb
interactions in three dimensions, J. Comput. Phys., 180 (2002), pp. 642–658.

[17] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987),
pp. 325–348.

[18] L. GREENGARD, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press, Cambridge, MA
1988.

[19] D. J. HARDY, M. A. WOLFF, J. XIA, K. SCHULTEN AND R. D. SKEEL, Multilevel summation with B-spline
interpolation for pairwise interactions in molecular dynamics simulations, J. Chem. Phys., 144 (2016), Article
114112.

[20] R. W. HOCKNEY AND J. W. EASTWOOD, Computer Simulation Using Particles, Taylor & Francis, Bristol,
1988.

[21] R. KRASNY AND L. WANG, A treecode based on barycentric Hermite interpolation for electrostatic particle
interactions, Comput. Math. Biophys., 7 (2019), pp. 73–84.

https://github.com/haboateng/comparison-of-tricubic-treecodes-Coulomb-kernel
https://github.com/haboateng/comparison-of-tricubic-treecodes-regularized-stokeslet-kernel

26

[22] J. LAGRONE, R. CORTEZ, W. YAN AND L. FAUCI, Complex dynamics of long, flexible fibers in shear, J.
Non-Newton. Fluid Mech., 269 (2019), pp. 73–81.

[23] F. LEKIEN AND J. MARSDEN, Tricubic interpolation in three dimensions, Int. J. Numer. Meth. Engng, 63
(2005), pp. 455–471.

[24] P. LI, H. JOHNSTON AND R. KRASNY, A Cartesian treecode for screened Coulomb interactions, J. Comput.
Phys., 228 (2009), pp. 3858–3868.

[25] K. LINDSAY AND R. KRASNY, A particle method and adaptive treecode for vortex sheet motion in three-
dimensional flow, J. Comput. Phys., 172 (2001), pp. 879–907.

[26] M. W. ROSTAMI AND S. D. OLSON, Kernel-independent fast multipole method within the framework of
regularized Stokeslets, J. Fluid Struct., 67 (2016), pp. 60–84.

[27] R. D. SKEEL, I. TEZCAN AND D. J. HARDY, Multiple Grid Methods for Classical Molecular Dynamics, J.
Comput. Chem., 23 (2002), pp. 673–684.

[28] J. TAUSCH, The Fast Multipole Method for arbitrary Green’s functions, Contemp. Math., 329 (2003),
pp. 307–314.

[29] L. WANG, S. TLUPOVA AND R. KRASNY, A treecode algorithm for 3D Stokeslets and stresslets, Adv. Appl.
Math. Mech., 11 (2019), pp. 737–756.

[30] L. WANG, R. KRASNY AND S. TLUPOVA, A kernel-independent treecode algorithm based on barycentric
Lagrange interpolation, Comm. Comput. Phys., 28(4) (2020), pp. 1415–1436.

[31] B. K. TAPLEY, H. I. ANDERSSON, E. CELLEDONI AND B. OWREN, Computational geometric methods for
preferential clustering of particle suspensions, J. Comput. Phys., 448(2022), 110725.

[32] L. YING, G. BIROS AND D. ZORIN, (2004) A kernel-independent adaptive fast multipole algorithm in two
and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

[33] L. YING, A kernel independent fast multipole algorithm for radial basis functions, J. Comput. Phys., 213
(2006), pp. 451–457.

[34] M. P. ALLEN AND D. J. TILDESLY Computer simulation of liquids, 1st ed.; Oxford University Press, (1987)
[35] W. SMITH, T. R. FORESTER AND I. T. TODOROV, The DL POLY Classic User Manual, STFC Daresbury

Laboratory: Daresbury, Warrington WA4 4AD, 2012.

	Introduction
	Tricubic interpolation
	C1 continuous tricubiclekien-marsden-05
	C0 continuous tricubic
	Discontinuous tricubic
	Rectangular parallelepiped meshes of arbitrary size
	A test of continuity in tricubic interpolants

	The tricubic treecode
	A particle-cluster interaction
	Computing derivatives of (??)
	The particle-cluster algorithm

	Numerical results
	Implementation details
	Coulomb kernel
	Regularized Stokeslet kernel
	Molecular dynamics simulation

	Conclusions
	Derivations for regularized Stokeslet kernel
	Particle-cluster approximation
	Analytical derivatives of the regularized Stokeslet kernel
	First partial derivatives
	Second partial derivatives
	Third partial derivative

