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Recently, there has been a concerted effort to implement advanced classical potential energy surfaces
by adding higher order multipoles to fixed point charge electrostatics in a bid to increase the accuracy
of simulations of condensed phase systems. One major hurdle is the unwieldy nature of the expres-
sions which in part has limited developers mostly to including only dipoles and quadrupoles. In this
paper, we present a generalization of the Cartesian formulation of electrostatic multipolar interactions
that enables the specification of an arbitrary order of multipoles. Specifically, we derive formulas for
arbitrary order implementation of the particle mesh Ewald method and give a closed form formula
for the stress tensor in the reciprocal space. In addition, we provide recurrence relations for common
electrostatic potentials employed in molecular simulations, which allows for the generalization to
arbitrary order and guarantees a computational cost that scales as O(p3) for Cartesian multipole
interactions of order p. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905952]

I. INTRODUCTION

The rapid increase in available computing power today
has spurred the adaptation of advanced classical electrostatic
potential energy surfaces. These provide better accuracy1–3

than the standard fixed point charge but hitherto had been
computationally prohibitive.

The development of distributed multipole analysis by
Stone4 was followed by the introduction of point multipoles
in Ewald summation by Smith.5 Most of the extensions to the
work by Smith has been limited to dipoles6 or up to quadru-
poles7–10 because of the cumbersome form of the Cartesian
representation. Sagui, Pedersen, and Darden (SPD)11 built on
initial work by Toukmaji et al.6 and extended the Cartesian
representation of the multipolar form of the particle mesh
Ewald (PME)12 method from first order to fourth order. Sim-
monett et al.13 have recast the real space part of the multipolar
Ewald sum in spherical harmonics while employing PME for
the reciprocal space part. The work by SPD on multipolar PME
has been implemented in the TINKER14 and Amber15 simu-
lation softwares as part of the AMOEBA2 polarizable force
field. The authors of this article are currently implementing the
AMOEBA force field in the DL_POLY16 simulation package
using the approach developed in this paper.

As computing power increases, the use of multipoles of
higher order to gain higher accuracy in simulation has become
more and more feasible. This paper generalizes previous work
by several groups7–11 in the spirit of Hättig’s17,18 work with
spherical tensor formalism to provide a simple framework
for implementing arbitrary order multipolar electrostatic inter-
actions. We apply our framework to PME and other com-
mon electrostatic potentials employed in most simulations.
Although obtaining higher order multipoles is challenging, the
GDMA program19 by Stone has made this task manageable and
offers the opportunity to obtain multipoles up to tenth order.20

a)Electronic mail: henry.boateng@stfc.ac.uk

We note that the AMOEBA force field includes induced-
dipoles in addition to permanent multipoles, but this article
focuses on the generalization of the permanent multipoles.
However, the implementation in DL_POLY includes induced-
multipoles as presented in the work of Ren and Ponder21 and
Burnham et al.22

The rest of the paper is organized as follows: Sec. II
introduces the formalism used in our derivations. In Sec. III,
we apply the formalism to derive formulas for arbitrary or-
der permanent Cartesian multipolar interaction for general
pair potentials and provide recurrence relations for the multi-
dimensional derivatives of some kernels in DL_POLY. Sec-
tion IV applies the method to PME, and in Sec. V, we outline
the derivation of a closed form formula for the stress tensor
due to an arbitrary order reciprocal space Ewald sum. This is
followed by concluding remarks and an appendix with more
detailed derivations.

II. FORMALISM

Following the notation in SPD,11 we consider a set of N
interacting point multipoles and define the multipolar operator,
L̂i, by

L̂i = (qi+pi ·∇i+Qi :∇i∇i+Oi :̇∇i∇i∇i
+Hi ::∇i∇i∇i∇i+ · ··), (1)

where pi, Qi, Oi, and Hi are the dipole, quadrupole, octupole,
and hexadecapole, respectively, of atom i. The “dot” products
stand for tensor contraction, thus,

Hi ::∇i∇i∇i∇i
=


α,β,γ,ν

Hαβγν(∂/∂xα)(∂/∂xβ)(∂/∂xγ)(∂/∂xν)

=


α,β,γ,ν

HαβγνDxαDxβDxγDxν. (2)

For any function, ψ(|ri − rj|) = ψ(ri j), ∇ jψ(ri j) = −∇iψ(ri j),
thus for any pair potential, given the definition of L̂i in Eq. (1),

0021-9606/2015/142(3)/034117/13/$30.00 142, 034117-1 © 2015 AIP Publishing LLC
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the corresponding multipolar operator for atom j is

L̂ ji = (qj−p j ·∇i+Q j :∇i∇i−O j :̇∇i∇i∇i
+H j ::∇i∇i∇i∇i+ · ··). (3)

Again following SPD, we define a unidimensional vector
of independent multipole moments,

M =
�
q, px, py, pz,Qxx,Qxy,Qxz,Qy y,Qyz,Qzz,

Oxxx, . . .,Hxxxx,Hxxxy, . . .
�
, (4)

based on the original multipole vector which has degenerate
components for multipoles of order two and higher. We use a
triplet {a,b,c} to refer to the components ofM. Thus,Mabc

refers to the component which in Eqs. (1) and (3) multiplies
the operator with a, b, and c derivatives in the x, y , and
z coordinates, respectively. As an example, M000 refers to
the zero-order multipole (monopole), i.e., M000 = q, which
multiplies unity,M100 refers to the x-coordinate of the dipole,
i.e., px which forms a product with the operator ∂/∂x and
M211 refers to the hexadecapole component Hxxyz which
multiplies ∂4/∂x2∂ y∂z. In addition, individual components
of M contain the sum of all degenerate original multipole
components. As an example, the octupoleM111, which forms a
product with ∂3/∂x∂ y∂z, is a sum of all six degenerate original
octupole components formed from the permutation of the
triplet {x, y, z}. If we label the original octupole vector as
O′, then M111 = O′xyz +O′xz y +O′yxz +O′yzx +O′zxy +O′z yx
= 6O′xyz.

With these definitions, we can rewrite the multipolar
operators up to order p on atoms i and j, respectively, in a
more compact form as

L̂i =

p
s=0

Ms
iD

s
i (5)

and

L̂ ji =

p
s=0

(−1)∥s∥Ms
jD

s
i, (6)

where s= (s1, s2, s3) and ∥s∥ = s = s1+ s2+ s3. As an example,
Eq. (6) can be expanded into

L̂ ji =

p
s3=0

p−s3
s2=0

p−s3−s2
s1=0

(−1)s1+s2+s3Ms1s2s3
j Ds3

ziD
s2
yiD

s1
xi, (7)

which shows that the sum over s is actually a triple sum over
s1, s2, and s3.

III. APPLICATION TO SIMPLE PAIR POTENTIALS

For N particles interacting via a pair potential function ψ,
the multipolar electrostatic potential at position ri is given by

φ(ri) =
N
j,i

L̂ jiψ(rji)

=

N
j,i

p
s=0

(−1)∥s∥Ms
jD

s
iψ(r j i)

=

N
j,i

p
s=0

(−1)∥s∥Ms
jD

s
iψ(ri j), (8)

the electrostatic field at ri is

E(rij) = −∇iφ(ri j)

= −
N
j,i

p
s=0

(−1)∥s∥Ms
j∇iD

s
iψ(ri j)

= −
N
j,i

p
s=0

(−1)∥s∥Ms
j



Ds+e1
i

Ds+e2
i

Ds+e3
i



ψ(ri j), (9)

where e1 = ⟨1, 0, 0⟩, e2 = ⟨0, 1, 0⟩, and e3 = ⟨0, 0, 1⟩ and the
torque on particle i in the α-direction, τi,α, is obtained as

τi,α =

p
s=0

Ms
i,αDs

iφ(rij)

=

p
s=0

Ms
i,α

N
j,i

p
k=0

(−1)∥k∥Mk
jD

s+k
i ψ(ri j), (10)

whereMi,α is the infinitesimal counter-clockwise rotation of
multipole vector Mi about the α-axis.11 The torques can be
converted to forces using procedures developed by several
workers.6,11,23

The total electrostatic potential energy is given by

U =
N
i< j

L̂i L̂ jiψ(ri j)

=

N
i< j

p
s=0

(−1)∥s∥Ms
jD

s
i

p
k=0

Mk
i Dk

iψ(ri j)

=

N
i< j

p
s=0

(−1)∥s∥Ms
j

p
k=0

Mk
i Ds+k

i ψ(ri j), (11)

where s+k= (s1+ k1, s2+ k2, s3+ k3) and the force on atom i
is

fi = −∇i
N
j,i

L̂i L̂ jiψ(ri j)

= −
N
j,i

p
s=0

(−1)∥s∥Ms
j

p
k=0

Mk
i



Ds+k+e1
i

Ds+k+e2
i

Ds+k+e3
i



ψ(ri j). (12)

A. Example

As an example, we consider the case where the multipoles
on each atom go up to quadrupoles, i.e., p= 2. For an original
multipole vector


q′, p′x, p

′
y, p

′
z,Q

′
xx,Q

′
xy,Q

′
xz,Q

′
yx,Q

′
y y,Q

′
yz,

Q′zx,Q
′
z y,Q

′
zz

�
, (13)

the corresponding independent multipole vector is

M =

q′, p′x, p

′
y, p

′
z,Q

′
xx, 2Q′xy, 2Q′xz,Q

′
y y, 2Q′yz,Q

′
zz



=
�
M000,M100,M010,M001,M200,M110,M101,

M020,M011,M002�. (14)
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In a system where the atoms have just charges and dipoles,
that is, p= 1, the total electrostatic energy is given by

U =
N
i< j

1
s=0

(−1)∥s∥Ms
j

1
k=0

Mk
i Ds+k

i ψ(ri j)

=

N
i< j


M000

j

�
M000

i ψ(ri j)+M100
i D100

i ψ(ri j)

+ M010
i D010

i ψ(ri j)+M001
i D001

i ψ(ri j)�
−M100

j

�
M000

i D100
i ψ(ri j)+M100

i D200
i ψ(ri j)

+ M010
i D110

i ψ(ri j)+M001
i D101

i ψ(ri j)�
−M010

j

�
M000

i D010
i ψ(ri j)+M100

i D110
i ψ(ri j)

+ M010
i D020

i ψ(ri j)+M001
i D011

i ψ(ri j)�
−M001

j

�
M000

i D001
i ψ(ri j)+M100

i D101
i ψ(ri j)

+ M010
i D011

i ψ(ri j)+M001
i D002

i ψ(ri j)�


(15)

and the force on an atom i is

fi = −
N
j,i

1
s=0

(−1)∥s∥Ms
j

1
k=0

Mk
i



Ds+k+e1
i

Ds+k+e2
i

Ds+k+e3
i



ψ(ri j)

= −
N
j,i




M000
j

*...
,

M000
i



D100
i

D010
i

D001
i



+M100
i



D200
i

D110
i

D101
i



+ M010
i



D110
i

D020
i

D011
i



+M001
i



D101
i

D011
i

D002
i



+///
-

ψ(ri j)

−M100
j

*...
,

M000
i



D200
i

D110
i

D101
i



+M100
i



D300
i

D210
i

D201
i



+ M010
i



D210
i

D120
i

D111
i



+M001
i



D201
i

D111
i

D102
i



+///
-

ψ(ri j)

−M010
j

*...
,

M000
i



D110
i

D020
i

D011
i



+M100
i



D210
i

D120
i

D111
i



+ M010
i



D120
i

D030
i

D021
i



+M001
i



D111
i

D021
i

D012
i



+///
-

ψ(ri j)

−M001
j

*...
,

M000
i



D101
i

D011
i

D002
i



+M100
i



D201
i

D111
i

D102
i



+ M010
i



D111
i

D021
i

D012
i



+M001
i



D102
i

D012
i

D003
i



+///
-

ψ(ri j)



. (16)

Computing the energy, forces, or torques comes down to
computing the multi-dimensional derivatives of the pair
potential kernel ψ. We use recurrence relations to obtain the
derivatives of the kernels to a specified order. In Sec. III B, we
provide the recurrence relations for kernels of electrostatic pair
potentials present in DL_POLY. Once the derivatives of ψ(ri j)
are at hand, computing the energy or force, for example, due to
an interaction between particles i and j involves an execution
of the loop structure in Algorithm I.

B. Recurrence relations

1. Kernels of the form θ(|x|)= 1
|x|ν

Let ⟨x1, x2, x3⟩ = x and ds1s2s3 = ds = Ds
xθ(|x|) be the

multidimensional derivative with respect to x of the pair
potential θ(|x|) with s1, s2, and s3 derivatives in the x, y ,

ALGORITHM I. Compute interactions.

1 Do s3 = 0, p
2 Do s2 = 0, p − s3

3 Do s1 = 0, p − s3 − s2

4 M̃s
j = (−1)s1+s2+s3 · Ms1s2s3

j

5 Do k3 = 0, p
6 Do k2 = 0, p − k3

7 Do k1 = 0, p − k3 − k2

8 U =U + M̃s
j · M

k1k2k3
i D

s3+k3
zi D

s2+k2
yi D

s1+k1
xi

ψ(ri j)

9 fi = fi − M̃s
j · M

k1k2k3
i



D
s3+k3
zi D

s2+k2
yi D

s1+k1+1
xi

D
s3+k3
zi D

s2+k2+1
yi D

s1+k1
xi

D
s3+k3+1
zi D

s2+k2
yi D

s1+k1
xi



ψ(ri j)

10 τi,α = τi,α +Mk1k2k3
i,α · M̃s

jD
s3+k3
zi D

s2+k2
yi D

s1+k1
xi

ψ(ri j)
11 End Do
12 End Do
13 End Do
14 End Do
15 End Do
16 End Do
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and z coordinates, respectively, i.e.,

ds= ds1s2s3=
∂∥s∥θ(|x|)
∂
s1
x1∂

s2
x2∂

s3
x3

. (17)

In work by Duan and Krasny,24 a recurrence relation for
the multidimensional Taylor coefficients, Ts of kernels of the
form

θ(|x|)= 1
|x|ν , (18)

was derived as

Ts=
1
|x|2




(
2− ν
∥s∥ −2

) 3
i=1

xiTs−ei+

(
2− ν
∥s∥ −1

) 3
i=1

Ts−2ei



, (19)

where

Ts=
1
s!

Ds
xθ(|x|)= 1

s1!s2!s3!
Ds

xθ(|x|). (20)

Using the definition in Eq. (20), the recurrence in Eq. (19) can
be expanded into

1
s!

Ds
xθ(|x|) = 1

|x|2



(
2− ν
∥s∥ −2

) 3
i=1

xi ·Ds−ei
x θ(|x|)

(s−ei)!

+

(
2− ν
∥s∥ −1

) 3
i=1

Ds−2ei
x θ(|x|)
(s−2ei)!



. (21)

Then multiplying through Eq. (21) by s! generates the
recurrence relation for the multidimensional derivatives of the
kernel as

ds(ν) = Ds
xθ(|x|)= 1

|x|2



(
2− ν
∥s∥ −2

) 3
i=1

sixids−ei

+

(
2− ν
∥s∥ −1

) 3
i=1

si(si−1)ds−2ei



. (22)

Here, we set x= rij to get the recurrence for a kernel written
as θ(ri j).

2. Recurrence for erfc(|x|)
|x| and erf(|x|)

|x|
The other relevant kernels we require are

ψ(|x|)=
√
π

2
erfc(|x|)

|x| and Γ(|x̄|)=
√
π

2
erf(|x|)
|x| . (23)

A recurrence relation for the Taylor coefficients of erfc(|x|)
|x| has

been derived previously.25,26 The recurrence requires Taylor
coefficients of the kernel

Ω(|x|)= 1
2

exp(−|x|2). (24)

If we let cs=Ds
xΩ(|x|) and as=Ds

xψ(|x|), then by using similar
arguments to that used in Sec. III B 1 and the recurrence for
the Taylor coefficients of ψ(|x|) and Ω(|x|), we can show that

cs=
−2
∥s∥

3
i=1

�
sixics−ei+ si(si−1)cs−2ei

�
(25)

and

as =
1
|x|2




(
1
∥s∥ −2

) 3
i=1

sixias−ei

+

(
1
∥s∥ −1

) 3
i=1

si(si−1)as−2ei+cs


. (26)

We can derive an analogous recurrence relation for bs
=Ds

xΓ(|x|), such that

bs =
1
|x|2




(
1
∥s∥ −2

) 3
i=1

sixibs−ei

+

(
1
∥s∥ −1

) 3
i=1

si(si−1)bs−2ei−cs


. (27)

If we let x= η ·rij, then

Ds
x


erfc(ηri j)

ri j


=

2
√
π
ηDs

x

√
π

2
erfc(η ·ri j)
η ·ri j



=
2
√
π
η∥s∥+1Ds

x

√
π

2
erfc(|x|)

|x|


=
2
√
π
η∥s∥+1as, (28)

and similarly,

Ds
x


erf(η ·ri j)

ri j


=

2
√
π
η∥s∥+1bs. (29)

For all the recurrence relations given above, the initial
term, (0, 0, 0), is the function value and the terms with negative
indices are zero.

C. Recurrences for common long-ranged electrostatic
pair potentials

Computing the energy and the forces boils down to
computing the multidimensional derivatives of the pair poten-
tial. In this section, we obtain the recurrence relations for
the derivatives of common long-ranged electrostatic potentials
employed in simulations based on the recurrence relations
provided earlier. These potentials are the

1. direct Coulomb sum,
2. force-shifted Coulomb sum,
3. Coulomb sum with distance dependent dielectric, and
4. reaction field.

We will discuss the fifth technique PME in Sec. IV. Without
loss of generality, we will set 1

4πϵ0ϵ
= 1.

1. Direct Coulomb sum

For two interacting ions i and j, the potential energy is
given as

U(ri j)= 1
4πϵ0ϵ

L̂i L̂ ji


1

ri j


, (30)
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and the relevant kernel is ψ(ri j)= 1
ri j

. The derivatives for this
kernel are obtained by using Eq. (22) with ν = 1. Thus,

Ds
iψ(ri j)= ds(1). (31)

2. Force-shifted Coulomb sum

Typically, two forms of the force-shifted Coulomb sum
potential27 are used in simulations. In the first form, the
potential energy due to two interacting ions i and j is

U(ri j)= 1
4πϵ0ϵ

L̂i L̂ ji


1

ri j
+

ri j
r2

cut
− 2

rcut


, (32)

where rcut is the cutoff radius. The kernel is ψ(ri j) = 1
ri j

+
ri j

r2
cut
− 2

rcut
. The last term, 2

rcut
, is a constant which has a zero

derivative; hence, the derivatives of the kernel are obtained as
a sum of the derivatives of the first term and second terms. We
employ Eq. (22) with ν = 1 for the first term and ν =−1 for the
second term. Thus,

Ds
iψ(ri j)= ds(1)+ ds(−1)

r2
cut

. (33)

Brommer et al.28 employed the second form to describe
a polarizable force field for silica with dipoles. The potential
energy due to two interacting ions i and j interacting via the
second form of the force-shifted Coulomb sum is

U(ri j) = 1
4πϵ0ϵ

L̂i L̂ ji


erfc(η ·ri j)

ri j
+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
ri j


−


erfc(η ·rcut)

rcut

+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
rcut


. (34)

The kernel, ψ(ri j), is the terms in the square bracket but the
only terms which contribute to the derivatives are the first and
second terms which are functions of ri j. The derivative of the
first term is obtained from Eqs. (26) and (28) and the derivative
for ri j in the second term is given by ds(−1). Thus,

Ds
iψ(ri j) =

2
√
π
η∥s∥+1as

+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
·ds(−1).

(35)

3. Coulomb sum with distance dependent dielectric

The potential energy between two interacting ions i and j
is

U(ri j)= 1
4πϵ0ϵ

L̂i L̂ ji



1
r2
i j


, (36)

and the kernel isψ(ri j)= 1
r2
i j

. The derivatives for this kernel are

obtained by using Eq. (22) with ν = 2. Hence,

Ds
iψ(ri j)= ds(2). (37)

4. Reaction field

Two forms of the reaction field method based on the work
of Neumann29 are typically used in simulations.

Nymand and Linse8 derived equations for a dipolar system
using the first form. In this form, the effective pair potential
energy due to two interacting ions i and j is given as

U(ri j)= 1
4πϵ0ϵ

L̂i L̂ ji



1
ri j
+

B0r2
i j

2R3
c

−1− B0

2


, (38)

where

B0=
2(ϵ1−1)
(2ϵ1+1) , (39)

Rc is the radius of the spherical cavity, and ϵ1 is the dielectric
constant outside the cavity. Again the kernel, ψ(ri j), is the
terms in the square bracket and only the first and second terms
contribute to its derivatives. The derivatives of the first and
second terms are given by Eq. (22) with ν = 1 and ν = −2,
respectively. Thus,

Ds
iψ(ri j)= ds(1)+ B0

2R3
c

ds(−2). (40)

The second form of the reaction field method is similar to
that of the force-shifted Coulomb sum. The potential energy
due to two interacting ions i and j is

U(ri j) = 1
4πϵ0ϵ

L̂i L̂ ji




erfc(η ·ri j)

ri j
+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
ri j


−


erfc(η ·rcut)

rcut

+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
rcut



−
B0r2

cut

2r3
cut
+

B0r2
i j

2r3
cut


. (41)

The kernel, ψ(ri j), is the terms in the square bracket and the
only terms which contribute to the derivatives are the first, sec-
ond, and last terms which are functions of ri j. The derivative of
the first term is obtained from Eqs. (26) and (28), the derivative
for ri j in the second term is given by ds(−1), and the derivative
for r2

i j in the last term is given by ds(−2). Thus,

Ds
iψ(ri j) =

2
√
π
η∥s∥+1as

+

(
erfc(η ·rcut)

r2
cut

+
2η
√
π

exp(−η2r2
cut)

rcut

)
·ds(−1)

+
B0

2r3
cut
·ds(−2). (42)

IV. Application to the smooth particle mesh Ewald

In this section, we will develop an implementation of the
smooth PME12 method to an arbitrary multipole order.

We consider a periodic system of N point multipoles with
positions {r1, . . ., rN} and net zero total charge. The funda-
mental simulation cell is defined by the vectors (a1, a2, a3)
which are the columns of a matrix h and the periodic images
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are translations of the fundamental cell. The simulation cell
volume is given by

V = |a1 · (a2×a3)| , (43)

and the reciprocal cell is defined by the vectors

a∗1= 2π
a2×a3

V
,

a∗2= 2π
a3×a1

V
,

a∗3= 2π
a1×a2

V
,

(44)

which are the rows of the matrix 2πh−1.
Ewald summation provides an efficient method for evalu-

ating the Coulomb energy of the periodic system by recasting
the conditionally convergent Coulomb sum

U(r1, . . ., rN)= 1
2

N
i, j=1

L̂i L̂ ji

′
n

1
4πϵ0ϵ |rij+nL| (45)

into two absolutely convergent sums, one in real space and the
other in reciprocal space. In Eq. (45), n= (n1,n2,n3) identifies
a unique cell, ni is an integer, L = (L1,L2,L3), and the prime
on the last sum means that the i = j term is omitted when
n= (0,0,0)which is the fundamental cell. The total electrostatic
energy due to the Ewald sum is given by the formula

U(r1,. . .,rN)=Udir+Urec−Uexcl−Uself, (46)

where

Udir=
1
2

N ∗
i< j

′
n

L̂i L̂ ji

erfc(η · |rij+n|)
4πϵ0ϵ |rij+n| , (47)

Uexcl=
1

4πϵ0ϵ


(i, j)∈M∗

L̂i L̂ ji

erf(η ·ri j)
ri j

, (48)

Uself =
1

8πϵ0ϵ
lim
|ri|→0

N
i=1

L̂i L̂i
erf(η · |ri|)

|ri| , (49)

and

Urec=
1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2 |S(k)|2, (50)

with

S(k)=
N
i=1

L̂iexp(ık ·ri). (51)

In the expressions above, M∗ is the set of all excluded
interactions due to intramolecular bonds or frozen atoms in
the simulation cell, N∗ = N −M∗, and η controls the relative
convergence rates of the real space term Udir and reciprocal
space term Urec. The particle mesh Ewald method provides a
fast approximation of the Ewald sum by shifting a substantial
amount of the computational work to the reciprocal space
though the choice of η and then employing interpolation via
B-splines and fast Fourier transforms (FFTs) to evaluate the
reciprocal space quickly. The real space decays quickly and is
handled by a simple cutoff method.

With the expressions above, we can develop the arbitrary
order implementation of PME. Essentially what we require

are the recurrence relations for derivatives of the kernels of
each term.

A. Real space sum

From Eq. (47), we see that the relevant kernel is ψ(ri j)
=

erfc(η |rij+n|)
|rij+n| . Derivatives for this kernel can be obtained by

using Eqs. (26) and (28) with x = η · |rij+ n|. Typically, the
choice of η limits the sum to the fundamental cell, thus n
= (0,0,0) and x= η ·ri j. Thus, the derivatives of the kernel are
given as

Ds
iψ(ri j)=

2
√
π
η∥s∥+1as. (52)

B. Excluded sum

The kernel in Eq. (48) is ψ(ri j)= erf(η ·ri j |)
ri j

. Derivatives of
this kernel are given by Eqs. (27) and (29) with x= η ·ri j, hence

Ds
iψ(ri j)=

2
√
π
η∥s∥+1bs. (53)

C. Self-interaction

To compute Uself from Eq. (49), we will need to evaluate
the derivatives of the kernel ψ(|ri|) = erf(η ·|ri|)

|ri| in the limit as
|ri|→ 0. We obtain a good approximation by using a regular-
ization to handle the singularity at |ri| = 0.

Let ri = |ri| and δ be the smoothing parameter. Then the
regularized kernel is given as

ψδ(ri)=
erf(η


r2
i +δ

2)
r2
i +δ

2
(54)

and

lim
ri→0

Ds
iψ(ri)≈Ds

iψδ(ri), (55)

where with x= η ·ri, we can follow previous work by Lindsay
and Krasny30 to show that if bs,δ =Ds

iψδ(ri), then the recurrence
for the derivatives of the regularized kernel is given by

bs,δ =
2
√
π
η∥s∥+1 1

(|x|2+δ2)



(
1
∥s∥ −2

) 3
i=1

sixibs−ei

+

(
1
∥s∥ −1

) 3
i=1

si(si−1)bs−2ei−cs


. (56)

Note that the recurrence for the regularized kernel given above
is similar to that for the normal kernel given in Eqs. (27) and
(29) with the factor 1

|x|2 replaced by 1
(|x|2+δ2) . Table I compares

exact results of lim
ri→0

Ds
iψ(ri) to the results obtained by regular-

ization for a few derivatives up to sixth order. The exact results
are obtained by taking analytical derivatives of the Taylor
series for erf(η ·ri)

ri
. For this test case η = 0.5, ri = ⟨0,0,0⟩ to

approximate ri→ 0 and δ = 0.01. The approximation is within
1% of the exact results for the derivatives considered. However,
the approximation gets worse with increasing order because of
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TABLE I. Test case for computing the limit of the derivatives of the kernel in Eq. (49), withη = 0.5, ri = ⟨0, 0, 0⟩,
δ = 0.01.

(s1, s2, s3) lim
ri→0

D
s1
x D

s2
y D

s3
z ψ(ri) D

s1
x D

s2
y D

s3
z ψδ(ri) % relative error

(0, 0, 0) 2η
√
π
= 0.564 190 0.564 185 8.86 × 10−4

(1, 0, 0) 0.0 0.0 . . .

(2, 0, 0) − 4η3

3
√
π
= −9.403 160 × 10−2 −9.403 029 × 10−2 1.39 × 10−3

(1, 1, 0) 0.0 0.0 . . .
(3, 0, 0) 0.0 0.0 . . .
(2, 1, 0) 0.0 0.0 . . .
(1, 1, 1) 0.0 0.0 . . .

(4, 0, 0) 24η5

5
√
π
= 8.462 844 × 10−2 8.462 692 × 10−2 1.8 × 10−3

(2, 2, 0) 8η5

5
√
π
= 2.820 948 × 10−2 2.820 897 × 10−2 1.8 × 10−3

(5, 0, 0) 0.0 0.0 . . .
(3, 1, 1) 0.0 0.0 . . .

(6, 0, 0) − 240η7

7
√
π
= −0.151 122 −0.149 506 1.07

(4, 2, 0) −48η7

7
√
π
= −3.022 44 × 10−2 −2.990 118 × 10−2 1.07

(2, 2, 2) − 16η7

7
√
π
= −1.007 481 × 10−2 −9.967 053 × 10−3 1.07

the increasing sensitivity of the higher order derivatives and the
accumulation of numerical errors.

The recursive schemes for the derivatives of the various
kernels ψ use the kernel value ψ(rij) as the initial value to
compute the (2p+ 1)3 derivatives required for evaluating the
energies and forces. In a simple implementation, this requires
three nested loops whose indices sum up to 2p+1 which shows
that the recurrences scale as O(p3) similar to the scaling in the
spherical tensor formalism.13,17,18 Analogous nested loops are
used in Algorithm I where the indices of the inner nested loop
over (k1,k2,k3) and the outer nested loop over (s1,s2,s3) both
sum up to p.

For the Ewald sum, the bulk of the computational cost
comes from the real space and reciprocal sums. The cost of the
excluded sum and the self-interaction is small in comparison.

Fig. 1 shows a plot of the overall cost of computing the
energy, forces, torques, and stress due to the real space Ewald

FIG. 1. A plot of cpu time of the real space Ewald sum vs order p for 32 000
water molecules.

sum, with constant force error of 10−5, against order p for
a system of 32 000 water molecules on a desktop computer.
The circles are the computational cost for p ∈ {0,1,2,3,4} and
the cubic curve is the best fit. The plot shows that the overall
computational cost is O(p3). We note that the focus of this plot
is not on performance of the code but to show that the algorithm
is formally O(p3). As a result, the code used to generate the
plot employed explicit loops as in Algorithm I instead of using
more efficient coding such as unrolling the loops.

Next, we develop an arbitrary order implementation of the
reciprocal space PME.

D. Reciprocal space-particle mesh approximation

The PME algorithm has been presented in several pap-
ers6,11,12,31 as such we will not replicate the development here.
The key idea of PME is in approximating the structure factor,

S(k)=
N
i=1

L̂iexp(ık ·ri), (57)

in a uniform grid, with K1×K2×K3 dimensions, that fills the
simulation cell. If we define the fractional coordinates of an
ion i as ⟨si1,si2,si3⟩= ⟨a∗1 ·ri,a∗2 ·ri,a∗3 ·ri⟩, uαi

= Kα · sαi , and Mn

is a B-spline of order n then the approximation of the structure
factor is given as

S(k)≈ b1(k1)b2(k2)b3(k3)QF (k1,k2,k3), (58)

where k= ⟨k1,k2,k3⟩ is a reciprocal space vector,

bi(ki) = exp(2πı(n−1)ki/Ki)

×


n−2
l=0

Mn(l+1)exp(2πıkl/Ki)


−1

, (59)
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Q is the multipolar array defined on the uniform grid, and QF is
its discrete Fourier transform. At position (l1,l2,l3) on the grid,
the multipolar array is defined by

Q(l1,l2,l3) =
N
i=1

L̂i


n1,n2,n3

Mn(u1i− l1−n1K1)

×Mn(u2i− l2−n2K2)×Mn(u3i− l3−n3K3), (60)

where uαi
− lα−nαKα are evaluation points of the B-spline on

the grid that spans the fundamental cell and the periodic im-
ages. Then from Eq. (5) and considering only the fundamental
cell, the multipolar array can be written explicitly as

Q(l1,l2,l3) =
N
i=1

p
s3=0

p−s3
s2=0

p−s3−s2
s1=0

Ms1s2s3
i

×Ds1
xiD

s2
yiD

s3
zi

�
Mn(u1i−l1)Mn(u2i−l2)Mn(u3i− l3)	.

(61)

Let a∗1= ⟨a∗11,a
∗
12,a

∗
13⟩, a∗2= ⟨a∗21,a

∗
22,a

∗
23⟩, and a∗3= ⟨a∗31,a

∗
32,a

∗
33⟩

be the reciprocal space basis vectors and K1, K2, and K3 be the
maximum number of grid points in the fundamental cell in the
x, y , and z directions, respectively. Recalling that Leibniz’s
rule for differentiation of products of functions f , g ∈ Cn is
given by

Dn
x [ f ·g]=

n
k=0

( n
k

)
Dk

x [ f ]Dn−k
x [g], (62)

and with uαi
=Kαa∗α ·ri, we can show that

Ds1
xiD

s2
yiD

s3
zi

�
Mn(u1i− l1)Mn(u2i− l2)Mn(u3i− l3)	

=

s3
k3=0

�
K1a∗13

�k3

(
s3

k3

) s2
k2=0

�
K1a∗12

�k2

(
s2

k2

)

×
s1

k1=0

�
K1a∗11

�k1

(
s1

k1

)
D∥k∥

u1i
Mn(u1i− l1)

×
s3−k3
j3=0

�
K2a∗23

� j3�K3a∗33

�s3−k3− j3
(

s3− k3

j3

)

×
s2−k2
j2=0

�
K2a∗22

� j2�K3a∗32

�s2−k2− j2
(

s2− k2

j2

)

×
s1−k1
j1=0

�
K2a∗21

� j1�K3a∗31

�s1−k1− j1

×
(

s1− k1

j1

)
D∥j∥

u2i
Mn(u2i− l2)D∥s−k−j∥

u3i
Mn(u3i− l3).

(63)

Note that Eq. (63) naturally incorporates the transformation
vectors used in Eqs. (2.50) and (2.51) of SPD.11 For simula-
tions in an orthogonal cell,

a∗12= a∗13= a∗21= a∗23= a∗31= a∗32= 0, (64)

and Eq. (63) simplifies greatly to

Ds1
xiD

s2
yiD

s3
zi

�
Mn(u1i− l1)Mn(u2i− l2)Mn(u3i− l3)	

=
�
K1a∗11

�s1
�
K2a∗22

�s2
�
K3a∗33

�s3Ds1
u1i

Mn(u1i− l1)
×Ds2

u2i
Mn(u2i− l2)Ds3

u3i
Mn(u3i− l3). (65)

We now derive a closed form formula for arbitrary derivatives
of the B-splines required in Eqs. (63) and (65).

1. Derivatives of Mn

Recall that Mn(u) has compact support on 0 ≤ u ≤ n,

M1(u)=



1 if 0 ≤ u ≤ 1,
0 otherwise,

M2(u)= 1− |u−1| on 0 ≤ u ≤ 2,

Mn(u)= u
n−1

Mn−1(u)+ n−u
n−1

Mn−1(u−1), (66)

and

d
du

Mn(u)=Mn−1(u)−Mn−1(u−1). (67)

From a repeated application of Eq. (67), we see that

dp

dup
Mn(u)=Dp

u Mn(u)=
p
t=0

( p
t

)
(−1)tMn−p(u− t). (68)

A proof of Eq. (68) is given in the Appendix, Subsection 1.
Mn has n points of evaluation {u1,u2,. . .,uk,. . .,un−1,un}, in

the interval (0,n), where u j = u1+ j−1. Let k = n− p, then

dp

dup
Mn(u)=

p
t=0

( p
t

)
(−1)tMk(u− t). (69)

Let j ∈ {1,2,. . .,k−1,k,k+1,. . .,n−1,n}, then

dp

dup
Mn(u j)=

p
t=0

( p
t

)
(−1)tMk(u j− t). (70)

In Eq. (70), there are non-zero contributions only when

u1 ≤ u j− t ≤ uk,

u1 ≤ u1+ j−1− t ≤ u1+ k−1,
1− j ≤ −t ≤ k− j,
j− k ≤ t ≤ j−1,

max{0, j− k} ≤ t ≤min{ j−1,p}, (71)

thus

dp

dup
Mn(u j)=

min{ j−1,p}
t=max{0, j−k}

( p
t

)
(−1)tMk(u j− t). (72)

The combinations
� p
t

�
can be computed once for all t, stored,

and used throughout a simulation. The derivatives of the B-
splines can also be precomputed and stored for each new
configuration of a simulation before the PME algorithm is
invoked.

E. Potential energy and forces from PME

From Eqs. (63) and (72), we can compute Eq. (61), the
components of the multipolar array. Then following the same
argument given in previous work,6,11,12,31,32 the reciprocal
space potential energy can be approximated as

Urec≈
1

2V ϵ0ϵ


k1,k2,k3

GF (k1,k2,k3)Q(k1,k2,k3), (73)
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where GF is the discrete Fourier transform of the function

G(k1,k2,k3)= exp(−k2/4η2)
k2 B(k1,k2,k3)

(
QF (k1,k2,k3)

)∗
(74)

and

B(k1,k2,k3)= |b1(k1)|2|b2(k2)|2|b3(k3)|2. (75)

The translational force on atom i for multipole order p is given
by

fi = −
1

V ϵ0ϵ


k,0

GF (k1,k2,k3)∇iQ(k1,k2,k3)

= − 1
V ϵ0ϵ


k,0

GF (k1,k2,k3)
p

s=0

Ms
i



Ds+e1
i

Ds+e2
i

Ds+e3
i


×
�
Mn(u1i− l1)Mn(u2i− l2)Mn(u3i− l3)	, (76)

which is computed by employing Eqs. (63) and (72).

V. COMPUTING THE STRESS TENSOR σ

For the direct space and excluded part of the Ewald sum,
the (α,β) elements of the stress tensor are given as

Vσαβ =
N ∗
i< j

(rij)α(fdir
i )β−


(i, j)∈M∗

(rij)α(fexcl
i )β, (77)

where the sum for the direct space is limited to the fundamental
cell, n= 0.

Nosé and Klein33 derived the formula for the elements
of the stress tensor in the case of point-charges for the recip-
rocal space Ewald sum. Following this work, stress tensor
formulas have been derived for the case where in addition to
point charges the particles have dipoles,6 dipoles and quad-
rupoles,7 and dipoles, quadrupoles, octupoles, and hexade-
capoles.11 Here, we provide the formula for the stress tensor
from the reciprocal space Ewald sum for an arbitrary order
of multipoles and outline the derivation. The full derivation is
shown in the Appendix, Subsection 2.

The components of the virial tensor33 are given by

Vσαβ =−

γ

∂Urec

∂hβγ
hβγ, (78)

and in matrix form as

Vσ =−∂U
∂h

h†, (79)

where h is the matrix whose columns are the vectors which
define the simulation cell. Hence, the ith column of h is

hi = hei = ai. (80)

The rows of the inverse of h are the vectors which define
the reciprocal cell divided by 2π, thus the ith column of the
transpose of h−1 is

(h−1)†i = (h−1)†ei = 1
2π

a∗i . (81)

The bulk of the work in computing the components of the
virial tensor comes from computing the derivative of Urec with

respect to the components of matrix h which is given as

∂Urec

∂hαβ
=

∂

∂hαβ

(
1
V

)
· 1
2ϵ0ϵ


k,0

exp(−k2/4η2)
k2 |S(k)|2

+
1

2V ϵ0ϵ


k,0

|S(k)|2 ∂

∂hαβ

(
exp(−k2/4η2)

k2

)

+
1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

∂ |S(k)|2
∂hαβ

. (82)

If we define J ℓ
i (k)=Mℓ

i Dℓ
i e
ık·ri and

Sβi (−k)=
p

ℓ=0

ℓβ

N
i=1

J ℓ
i (−k), (83)

with ℓ = (ℓ1,ℓ2,ℓ3), then for multipolar interactions up to an
arbitrary order p,

S(k)=
N
i=1

L̂ieık·ri=

N
i=1


ℓ=0

Mℓ
i Dℓ

i e
ık·ri=

N
i=1

p
ℓ=0

J ℓ
i (k). (84)

Performing the derivative in Eq. (82) results in

∂Urec

∂hαβ
= − 1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×


|S(k)|2


h−1
βα−2

(
k2/4η2+1

k2

)
kα


γ

h−1
βγkγ



+ 2S(k)
N
i=1

p
ℓ=0

Jℓ
i (−k)kα


γ

h−1
βγ

ℓγ

kγ



, (85)

which inserted in Eq. (78) gives the components of the stress
tensor as

Vσrec
αβ =

1
2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×

|S(k)|2


δαβ−2

(
k2/4η2+1

k2

)
kαkβ



+ 2S(k)Sβi (−k) kα
kβ


. (86)

Note that when the system has only point charges, p = 0,
meaning that ℓβ = 0 and Sβi (−k)= 0, thus the last term in Eq.
(86) evaluates to zero, and we recover the stress tensor for
point-charges derived by Nosé and Klein.33

Similar to the approximation of S(k) given in Eq. (58), if
we define a modified multipolar array at grid points (r1,r2,r3)
as

Qβ(r1,r2,r3) =
p

ℓ=0

ℓβ

N
j=1

Mℓ
i D

ℓ
i

×
�
Mn(u1i−r1)Mn(u2i−r2)Mn(u3i−r3)	, (87)

then Sβi (−k) can be approximated on the grid as

Sβi (−k)≈ b1(−k1)b2(−k2)b3(−k3)
(
QFβ (k1,k2,k3)

)∗
, (88)

where QFβ is the Fourier transform of Qβ. Since β ∈ {1,2,3},
computing the stress tensor requires computing all three diffe-
rent Sβi (−k) for ℓβ ∈ {ℓ1,ℓ2,ℓ3} which requires three FFTs in
addition to the two to compute S(k) and GF in Eq. (74).
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FIG. 2. A plot of cpu time of the reciprocal space PME vs order p for 32 000
water molecules.

Fig. 2 is a plot of the overall cost of computing the energy,
forces, torques, and stress due to the reciprocal space PME,
with constant force error 10−5 for different multipole orders p
for a system of 32 000 water molecules on a desktop computer.
The Ewald convergence parameter η is the same as was used
for the real space sum and (K1,K2,K3)= (72,72,72). The circles
are the computational cost for p ∈ {0,1,2,3,4} and the cubic
curve is the best fit. The cost of the reciprocal sum is dominated
by the construction of the multipolar arrays in Eq. (61) and
the forces from Eq. (76), which are both O(p3) operations for
a fixed number of particles. We note again that in order to
capture the formal O(p3) cost of the reciprocal space, the plot
was generated with a simple code with a nested loop structure
and not optimized for performance.

VI. CONCLUSION

We have formulated permanent Cartesian multipolar elec-
trostatics which simplifies the unwieldy expressions and en-
ables an arbitrary order implementation. This formulation has
been applied to several common pair potentials present includ-
ing the particle mesh Ewald method. Our Cartesian formu-
lation grows as O(p3) for multipolar order p which makes
it formally as competitive as the spherical harmonic based
approach recently introduced by Simmonett et al.13 Finally
for constant pressure simulations, we derived a closed form
formula for the stress tensor due to an arbitrary order imple-
mentation of the reciprocal space Ewald.
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APPENDIX: PROOFS AND DERIVATIONS
1. Proof of Eq. (68)-formula for higher order
derivatives of B-splines

We claim that the pth derivative of the B-spline of order n
is given by

dp

dup
Mn(u)=

p
t=0

( p
t

)
(−1)tMn−p(u− t). (A1)

We prove by induction. First note that the formula holds
for p= 1,

d
du

Mn(u) =
(

1
0

)
(−1)0Mn−1(u)+

(
1
1

)
(−1)1Mn−1(u−1)

= Mn−1(u)−Mn−1(u−1). (A2)

We assume the formula holds for p= k, hence

dk

duk
Mn(u)=

k
t=0

(
k
t

)
(−1)tMn−k(u− t). (A3)

Then to complete the proof, we have to show that the formula
holds for p= k+1, that is,

dk+1

duk+1 Mn(u)=
k+1
t=0

(
k+1

t

)
(−1)tMn−(k+1)(u− t). (A4)

We proceed by using our assumption that the formula holds for
p= k, thus

dk+1

duk+1 Mn(u) = d
du

(
dk

duk
Mn(u)

)

=

k
t=0

(
k
t

)
(−1)t d

du
Mn−k(u− t)

=

k
t=0

(
k
t

)
(−1)t�Mn−(k+1)(u− t)

− Mn−(k+1)[u− (t+1)]	

=

k
t=0

(
k
t

)
(−1)tMn−(k+1)(u− t)

+

k
t=0

(
k
t

)
(−1)t+1Mn−(k+1)[u− (t+1)]

=

k
t=0

(
k
t

)
(−1)tMn−(k+1)(u− t)

+

k+1
t=1

(
k

t−1

)
(−1)tMn−(k+1)(u− t)

=

(
k
0

)
Mn−(k+1)(u)

+

k
t=1

(
k
t

)
+

(
k

t−1

)
(−1)tMn−(k+1)(u− t)

+

(
k
k

)
Mn−(k+1)[u− (k+1)]. (A5)

Now note that(
k
0

)
=

(
k+1

0

)
,

(
k
t

)
+

(
k

t−1

)
=

(
k+1

t

)
, and(

k
k

)
=

(
k+1
k+1

)
,
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thus

dk+1

duk+1 Mn(u) =
(

k+1
0

)
Mn−(k+1)(u)

+

k
t=1

(
k+1

t

)
(−1)tMn−(k+1)(u− t)

+

(
k+1
k+1

)
Mn−(k+1)[u− (k+1)]

=

k+1
t=0

(
k+1

t

)
(−1)tMn−(k+1)(u− t). (A6)

2. Derivation of the stress tensor

The components of the virial tensor are given as33

Vσαβ =−

γ

∂Urec

∂hβγ
hβγ (A7)

and the derivative of Urec is given by

∂Urec

∂hαβ
=

∂

∂hαβ

(
1
V

)
· 1
2ϵ0ϵ


k,0

exp(−k2/4η2)
k2 |S(k)|2

+
1

2V ϵ0ϵ


k,0

|S(k)|2 ∂

∂hαβ

(
exp(−k2/4η2)

k2

)

+
1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

∂ |S(k)|2
∂hαβ

. (A8)

First, we show that

∂

∂hαβ
V =V

(
h−1
αβ

)†
=V h−1

βα. (A9)

The volume

V = |a1 · (a2×a3)| = |a2 · (a3×a1)| = |a3 · (a1×a2)|
= hα · hγ×hµ, (A10)

where α, γ, µ ∈ {1,2,3}, they are all distinct and γ and µ can
be flipped to ensure a positive output. The proof of Eq. (A9) is
shown as

∂V
∂hαβ

=
∂

∂hαβ

�
hα · hγ×hµ

�
=
∂hα
∂hαβ

·
�
hγ×hµ

�

= eβ ·
�
hγ×hµ

�
= eβ ·a∗α

V
2π

= eβ · (h−1)†αV =V (h−1)†α,β
= V h−1

βα. (A11)

Then we find that

∂

∂hαβ

(
1
V

)
=− 1

V 2V h−1
βα =−

h−1
βα

V
. (A12)

In addition,

∂

∂hαβ

(
exp(−k2/4η2)

k2

)

=
k2 ∂

∂hαβ
e−k

2/4η2−e−k
2/4η2 ∂

∂hαβ
k2

k4 (A13)

=

k2e−k
2/4η2

(
− 1

4η2

)
∂k2

∂hαβ
−e−k

2/4η2 ∂k2

∂hαβ

k4 (A14)

=−e−k
2/4η2

k2
*.
,

k2

4η2 +1

k2
+/
-

∂k2

∂hαβ
. (A15)

Now, we find the derivative of k2 = k · k. First note that the
reciprocal cell vector

k= 2π(h−1)†n, (A16)

where n= ⟨n1,n2,n3⟩, and ni is an integer. Then we differentiate

k2= 4π2n†h−1(h−1)†n, (A17)

with respect to hαβ to get

∂k2

∂hαβ
= 4π2 ∂

∂hαβ
n†h−1(h−1)†n

= 4π2n†
∂

∂hαβ
[h−1(h−1)†]n

= 4π2n†


∂

∂hαβ
[h−1](h−1)†+h−1 ∂

∂hαβ
(h−1)†


n

= 4π2n†


(
∂

∂hαβ
h−1

)
(h−1)†+h−1

(
∂

∂hαβ
h−1

)†n

= −4π2n†

h−1 ∂h

∂hαβ
h−1(h−1)†

+ h−1(h−1)† ∂h†

∂hαβ
(h−1)†


n

= −2π[n†h−1] ∂h
∂hαβ

h−12π[(h−1)†n]

− 2π[n†h−1](h−1)† ∂h†

∂hαβ
2π[(h−1)†n]

= −k†
∂h
∂hαβ

h−1k−k†(h−1)† ∂h†

∂hαβ
k. (A18)

Noting that ∂h
∂hαβ

is a matrix of zeroes except for the (α,β)
element which is one gives

(
∂h
∂hαβ

)
µν
= δµαδνβ and similarly,(

∂h†
∂hαβ

)
µν
= δµβδνα. Then we see that

k†
∂h
∂hαβ

=
∂h†

∂hαβ
k= (k)αê†β, (A19)

where êβ is the standard basis vectors in the β direction and
since

h−1k=k†(h−1)†, (A20)

Equation (A18) becomes

∂k2

∂hαβ
= −2k†

∂h
∂hαβ

h−1k

= −2kαê†β · h
−1k

= −2kα

γ

h−1
βγkγ. (A21)
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Inserting Eq. (A21) into Eq. (A15) yields

∂

∂hαβ

(
exp(−k2/4η2)

k2

)

=−2
e−k

2/4η2

k2
*.
,

k2

4η2 +1

k2
+/
-

kα

γ

h−1
βγkγ, (A22)

and with Eq. (A12), we arrive at

∂Urec

∂hαβ
= − 1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2 |S(k)|2

×

h−1
βα−2

(
k2/4η2+1

k2

)
kα


γ

h−1
βγkγ



+
1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

∂ |S(k)|2
∂hαβ

. (A23)

Next, we find ∂|S(k)|2
∂hαβ

by first noting that

∂ |S(k)|2
∂hαβ

= S(k)

∂S(−k)
∂hαβ


+


∂S(k)
∂hαβ


S(−k). (A24)

If we define J ℓ
i (k)=Mℓ

i Dℓ
i e
ık·ri, where ℓ = (ℓ1,ℓ2,ℓ3), then for

multipolar interactions up to an arbitrary order p,

S(k)=
N
i=1

L̂ieık·ri=

N
i=1

p
ℓ=0

Mℓ
i Dℓ

i e
ık·ri=

N
i=1

p
ℓ=0

J ℓ
i (k). (A25)

In addition,

Dℓ
i e
ık·ri=Dℓ3

zi D
ℓ2
yiD

ℓ1
xie

ık·ri= (ı)ℓ(k1)ℓ1(k2)ℓ2(k3)ℓ3eık·ri, (A26)

hence,

S(k) =
N
i=1

p
ℓ=0

(ı)ℓ(k1)ℓ1(k2)ℓ2(k3)ℓ3Mℓ
i e
ık·ri

=

N
i=1

p
ℓ=0

J ℓ
i (k), (A27)

which means that

J ℓ
i (k)= (ı)ℓ(k1)ℓ1(k2)ℓ2(k3)ℓ3Mℓ

i e
ık·ri (A28)

and similarly

J ℓ
i (−k)= (−ı)ℓ(k1)ℓ1(k2)ℓ2(k3)ℓ3Mℓ

i e
−ık·ri. (A29)

We see then that

∂S(k)
∂hαβ

=

N
i=1

p
ℓ=0

(ı)ℓMℓ
i e
ık·ri

∂

∂hαβ

(k1)ℓ1(k2)ℓ2(k3)ℓ3


(A30)

and
∂

∂hαβ

(k1)ℓ1(k2)ℓ2(k3)ℓ3


= (k2)ℓ2(k3)ℓ3
∂

∂hαβ
(k1)ℓ1+ (k1)ℓ1(k3)ℓ3

∂

∂hαβ
(k2)ℓ2

+ (k1)ℓ1(k2)ℓ2
∂

∂hαβ
(k3)ℓ3. (A31)

Recalling the definition of the reciprocal space vector

k = 2π
�
h−1�†n= 2π

3
µ=1

⟨h−1
µ1nµ,h−1

µ2nµ,h−1
µ3nµ,⟩

= ⟨k1,k2,k3⟩, (A32)

we find that

∂
�
k j

�ℓ j

∂hαβ
= ℓ j

�
k j

�ℓ j−1 · ∂

∂hαβ
k j

= 2πℓ j
�
k j

�ℓ j−1
3
µ=1



∂h−1
µ j

∂hαβ


nµ. (A33)

By differentiating through the equation hh−1= I with respect
to hα,β, we find that

∂h−1
µ j

∂hαβ
=−h−1

µαh−1
β j, (A34)

and we arrive at

∂
�
k j

�ℓ j

∂hαβ
= −2πℓ j

�
k j

�ℓ j−1
3
µ=1

h−1
µαh−1

β jnµ

= −ℓ j
�
k j

�ℓ j−1*.
,
2π

3
µ=1

h−1
µαnµ

+/
-

h−1
β j

= −ℓ j
�
k j

�ℓ j−1kαh−1
β j . (A35)

Therefore, we can write Eq. (A31) in a more compact form as
∂

∂hαβ

(k1)ℓ1(k2)ℓ2(k3)ℓ3


=−l1(k1)ℓ1−1(k2)ℓ2(k3)ℓ3kαh−1
β1

− ℓ2(k1)ℓ1(k2)ℓ2−1(k3)ℓ3kαh−1
β2

− ℓ3(k1)ℓ1(k2)ℓ2(k3)ℓ3−1kαh−1
β3

=−(k1)ℓ1(k2)ℓ2(k3)ℓ3kα


ℓ1

k1
h−1
β1+

ℓ2

k2
h−1
β2+

ℓ3

k3
h−1
β3



=−(k1)ℓ1(k2)ℓ2(k3)ℓ3kα

γ

h−1
βγ

ℓγ

kγ
, (A36)

and Eq. (A30) becomes

∂S(k)
∂hαβ

= −
N
i=1

p
ℓ=0

(ı)ℓMℓ
i e
ık·ri(k1)ℓ1(k2)ℓ2(k3)ℓ3kα

×

γ

h−1
βγ

ℓγ

kγ
. (A37)

Similarly,

∂S(−k)
∂hαβ

= −
N
i=1

p
ℓ=0

(−ı)ℓMℓ
i e
−ık·ri(k1)ℓ1(k2)ℓ2(k3)ℓ3kα

×

γ

h−1
βγ

ℓγ

kγ
. (A38)

It follows from the above equations that

S(k)

∂S(−k)
∂hαβ


=


∂S(k)
∂hαβ


S(−k), (A39)
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and hence Eq. (A24) becomes

∂ |S(k)|2
∂hαβ

= 2S(k)

∂S(−k)
∂hαβ



= −2S(k)
N
i=1

p
ℓ=0

(−ı)ℓMℓ
i

× e−ık·ri(k1)ℓ1(k2)ℓ2(k3)ℓ3kα

γ

h−1
βγ

ℓγ

kγ

= −2S(k)
N
i=1

p
ℓ=0

J ℓ
i (−k)kα


γ

h−1
βγ

ℓγ

kγ
. (A40)

Inserting Eq. (A40) into Eq. (A23) gives

∂Urec

∂hαβ
= − 1

2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×


|S(k)|2


h−1
βα−2

(
k2/4η2+1

k2

)
kα


γ

h−1
βγkγ



+ 2S(k)
N
i=1

p
ℓ=0

J ℓ
i (−k)kα


γ

h−1
βγ

ℓγ

kγ



, (A41)

which is used in Eq. (A7) to get

Vσrec
αβ =

1
2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×


|S(k)|2




γ

h−1
γαhβγ−2

(
k2/4η2+1

k2

)
kα

×

γ


µ

h−1
γµkµhβγ


+2S(k)

N
i=1

p
ℓ=0

J ℓ
i (−k)kα

×

γ

hβγ

µ

h−1
γµ

ℓµ

kµ



. (A42)

Now, we note that 
γ

h−1
γαhβγ = δαβ, (A43)

since the operation is just a scalar product of the row-β of
matrix h and column-α of matrix h−1 and these two vectors
are orthonormal. Then,
γ


µ

h−1
γµhβγkµ =


µ

kµ

γ

h−1
γµhβγ =


µ

kµδµβ = kβ (A44)

and similarly 
γ


µ

h−1
γµhβγ

ℓµ

kµ
=
ℓβ

kβ
. (A45)

Using Eqs. (A43)–(A45) to simplify Eq. (A42), we find the
reciprocal space virial tensor as

Vσrec
αβ =

1
2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×

|S(k)|2


δαβ−2

(
k2/4η2+1

k2

)
kαkβ



+ 2S(k) kα
kβ

p
ℓ=0

ℓβ

N
i=1

J ℓ
i (−k)



. (A46)

If we define

Sβi (−k)=
p

ℓ=0

ℓβ

N
i=1

J ℓ
i (−k), (A47)

then Eq. (A46) can be written in a more compact form as

Vσrec
αβ =

1
2V ϵ0ϵ


k,0

exp(−k2/4η2)
k2

×

|S(k)|2


δαβ−2

(
k2/4η2+1

k2

)
kαkβ



+ 2S(k)Sβi (−k) kα
kβ


. (A48)
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